Noninvasive Optogenetic Interventions for Epilepsy
癫痫的无创光遗传学干预
基本信息
- 批准号:10400233
- 负责人:
- 金额:$ 12.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAnterior Nuclear GroupAnticonvulsantsBehaviorBrainCanis familiarisCerebellar CortexCerebellumChronicCicatrixClinicalCognitiveCollaborationsComputer AnalysisCore FacilityCouplingDeep Brain StimulationDevelopmentDevicesElectrodesElectrophysiology (science)EngineeringEnvironmentEpilepsyFiber OpticsFocal SeizureFoundationsFutureGene DeliveryGeneralized seizuresGliosisGoalsGrantHippocampus (Brain)ImplantIndividualInterneuronsInterventionIntractable EpilepsyLightLocationMammalsManuscriptsMapsMentorsMethodologyMethodsModalityModelingMotor CortexMusNeuraxisNeuronsNeurosciencesNucleus fastigiiOperative Surgical ProceduresOpsinOpticsOutputPartial EpilepsiesPathologyPatientsPenetrationPharmaceutical PreparationsPhasePlayPresynaptic TerminalsProteinsPublic SpeakingPurkinje CellsRattusRecurrenceRefractoryResearchResearch PersonnelResearch Project GrantsRoleSeizuresSilicon DioxideSomatosensory CortexSpecificitySystemTechniquesTechnologyTestingTherapeuticThickTissuesTrainingTransgenic MiceUniversitiesViralWorkWritingbiomaterial compatibilitycareercareer developmentcell typeclinical translationcomorbiditycraniumexperienceexperimental studygene therapyimplantationimprovedlight emissionlight gatedmotor controlmouse modelnanoparticlenervous system disorderneural circuitneural implantneural networkneuroinflammationneuromechanismneuroregulationnonhuman primatenovelnovel therapeuticsoptical fiberoptogeneticsphotoactivationrelating to nervous systemside effectsuperior colliculus Corpora quadrigeminatechnique developmenttherapeutic targettherapy developmenttooltreatment strategywaveguide
项目摘要
In patients with epilepsy, central nervous system hyperexcitability and synchrony contribute to seizures and cognitive comorbidities. Systemic treatments with anticonvulsant drugs do not adequately control seizures and are often accompanied by severe side effects, where approximately 30-40% of the estimated 65 million epileptic patients worldwide are drug refractory. Consequently, new therapies are needed. Recent advances in optogenetics have demonstrated seizure suppression through precise cell type specific directional control of neural activity. While closed-loop optogenetic interventions provide strategies to identify networks to curtail seizures, the use of implanted fiber optic waveguides and transgenic mice precludes usage as a therapeutic tool. To overcome challenges associated with optogenetics as a clinical modality, this proposal will test the hypothesis that recently discovered supersensitive and red-shifted Channelrhodopsins (ChRs) can enable transcranial and cell type specific termination of spontaneous, recurrent seizures. The hypothesis will be tested by developing noninvasive viral-targeting strategies to restrict expression of these new ChRs to therapeutically- relevant interneuron subtypes followed by transcranial closed-loop optogenetic control in mouse models of focal epilepsy in the cortex and hippocampus. Chronic seizure suppression will be performed to test the long- term stability of this approach in wild-type animals. Further refining stimulation to specific projections will minimize off-target effects. By overcoming long standing hurdles of optogenetics, including invasiveness, viral- targeting of neural subpopulations, and scalability, this transcranial optogenetic platform will identify new opportunities for the treatment of epilepsy and may be extended to manage other neurological disorders. During the proposed research and career training plan, I will be mentored by an experienced team of experts in systems neuroscience, optogenetics, animal models of epilepsy and behavior, electrophysiology and computational analysis. This team will advise my research project and professional development through training in new techniques, manuscript and grant writing, public speaking, advising of mentees, and collaborations within the tremendous scientific environment at Stanford University, which offers several core facilities, career development centers, and formal coursework to support my work. Upon completion of this mentored research project, I will gain a strong technical and conceptual foundation to bridge my background in engineering with systems neuroscience, which I will use to establish an independent research career to develop and apply methods to study the neural mechanisms that underly neurological disorders and to develop treatment concepts for them.
在癫痫患者中,中枢神经系统过度兴奋和同步会导致癫痫发作和认知合并症。使用抗惊厥药物进行全身治疗并不能充分控制癫痫发作,而且常常伴有严重的副作用,全球估计有 6500 万癫痫患者,其中约 30-40% 是药物难治性的。因此,需要新的疗法。光遗传学的最新进展表明,通过精确的细胞类型特异性定向控制神经活动可以抑制癫痫发作。虽然闭环光遗传学干预提供了识别网络以减少癫痫发作的策略,但植入光纤波导和转基因小鼠的使用排除了作为治疗工具的使用。为了克服与光遗传学作为临床模式相关的挑战,该提案将检验最近发现的超敏感和红移视紫红质(ChR)可以通过颅内和细胞类型特异性终止自发性、复发性癫痫发作的假设。该假设将通过开发非侵入性病毒靶向策略来测试,以限制这些新 ChR 的表达到治疗相关的中间神经元亚型,然后在皮层和海马局灶性癫痫小鼠模型中进行经颅闭环光遗传学控制。将进行慢性癫痫发作抑制,以测试这种方法在野生型动物中的长期稳定性。对特定预测的进一步细化刺激将最大限度地减少脱靶效应。通过克服光遗传学的长期障碍,包括侵入性、神经亚群的病毒靶向性和可扩展性,这种经颅光遗传学平台将为治疗癫痫找到新的机会,并可能扩展到治疗其他神经系统疾病。 在拟议的研究和职业培训计划期间,我将得到系统神经科学、光遗传学、癫痫和行为动物模型、电生理学和计算分析方面经验丰富的专家团队的指导。该团队将通过新技术培训、手稿和资助写作、公开演讲、为学员提供建议以及在斯坦福大学巨大的科学环境中进行合作,为我的研究项目和专业发展提供建议,斯坦福大学提供了多个核心设施、职业发展中心和正式课程来支持我的工作。完成这个指导研究项目后,我将获得强大的技术和概念基础,将我的工程学背景与系统神经科学联系起来,我将利用它建立独立的研究生涯,开发和应用方法来研究神经系统疾病背后的神经机制,并为其开发治疗概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritchie Chen其他文献
Ritchie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritchie Chen', 18)}}的其他基金
Noninvasive Optogenetic Interventions for Epilepsy
癫痫的无创光遗传学干预
- 批准号:
10703721 - 财政年份:2021
- 资助金额:
$ 12.23万 - 项目类别:
Noninvasive Optogenetic Interventions for Epilepsy
癫痫的无创光遗传学干预
- 批准号:
10215127 - 财政年份:2021
- 资助金额:
$ 12.23万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 12.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




