Precision Assessment Algorithm for Reducing Disaster-related Respiratory Health Disparities
减少灾害相关呼吸健康差异的精确评估算法
基本信息
- 批准号:10401726
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAssessment toolCOVID-19COVID-19 pandemicCessation of lifeChronicCommunicable DiseasesCommunitiesComplexComputer softwareComputerized Medical RecordCrimeDataData AnalysesDevice or Instrument DevelopmentDisastersDiseaseElderlyElectronic Health RecordEmergency SituationEnsureExposure toFloodsFoundationsFrequenciesGoalsHealthHealth PersonnelHealthcare SystemsHomeHospitalsHouseholdHousingInjuryInterventionInterviewKnowledgeLearningLength of StayLung diseasesMachine LearningMeasuresMental HealthMethodsModelingMoldsMorbidity - disease rateMotivationOutcomeParticipantParticulatePathway interactionsPatient Outcomes AssessmentsPatient Self-ReportPatientsPlug-inPopulationPreparationProcessQuality of lifeQuarantineReadinessResearchResourcesRespiratory Signs and SymptomsRiskSamplingSavingsSelf AssessmentSelf ManagementServicesSeveritiesSoftware ToolsSurveysSystemTestingTimeTranslatingTraumaVictimizationWorkbasebehavior changebehavioral responseclimate disastercostdisparities in morbidityenvironmental changeexperiencehazardhealth care service utilizationhealth disparityhigh riskhospital readmissionimprovedinstrumentinteroperabilitymachine learning algorithmmathematical modelmembermortality disparitynext generationnovelpandemic diseasepersonalized interventionprognosticprototyperacial biasracial disparityracial identityrecruitrespiratoryrespiratory healthrespiratory morbidityskillstelehealthweather-related disaster
项目摘要
ABSTRACT
Weather and climate disasters are responsible for over 13,000 deaths and $1.7 trillion additional costs over the
last 40 years in the USA. Older adults are particularly susceptible to respiratory symptoms, disease
exacerbation, unscheduled health care utilization, and decreased quality of life after disaster exposure to
particulates, mold, and flooding. Our preliminary data reveal those with Black racial identities possess fewer
resources to prepare for disaster. Profound racial disparities observed in the COVID-19 pandemic illustrate the
devastating sequelae of long-standing macro-level disparities of segregated housing and sociopolitical
networks. The long-term goal of this work is to eliminate racial disparities in large scale disaster health
outcomes. The short-term goal of this research is to identify pathways of equal opportunity and disaster
affirmative action interventions. The objective here is to create a software prototype of a machine learning
algorithm with a novel, valid and reliable assessment tool of disaster vulnerability for older adults with chronic
obstructive respiratory disease, prioritizing equality of opportunity to reduce racial bias and disparity. Our
specific aims are to 1) Empirically validate a novel assessment tool of disaster vulnerability using self-reported
items and scoring system, 2) Refine the validated instrument with a machine learning based algorithm for
precision prediction of household emergency preparedness for disaster, 3) Assess racial disparities, data and
algorithm bias for Black participants in household hazard vulnerabilities and our instrument development
process, and 4) Test interoperability with existing customer software platforms as a plug-in software add-on.
We will accomplish these aims using a mixed-methods approach, recruiting 20 expert panel members and up
to 600 potential end-user participants, working to over-sample those who reside in predominantly Black
communities and Black racial identities. The knowledge gained from this study will provide foundational work to
develop precision interventions to reduce post-disaster respiratory symptoms, disease exacerbation,
unscheduled health care utilization, and decrements in respiratory quality of life. The results of this study will
inform the next generation of electronic health record and patient reported outcomes applications, ensuring the
validity, prognostic accuracy, and machine learning models are most relevant to those at highest risk for racial
disparities: those with Black racial identities. Health care providers can use our software tool to target and
optimize disaster telehealth service lines and increase intervention precision to reduce disaster morbidity and
mortality disparities.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Castner其他文献
Jessica Castner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Castner', 18)}}的其他基金
Environmental Health Research Institute for Nurse and Clinician Scientists (EHRI-NCS)
护士和临床科学家环境健康研究所 (EHRI-NCS)
- 批准号:
10309098 - 财政年份:2021
- 资助金额:
$ 22.83万 - 项目类别:
Precision Assessment Algorithm for Reducing Disaster-related Respiratory Health Disparities
减少灾害相关呼吸健康差异的精确评估算法
- 批准号:
10764033 - 财政年份:2021
- 资助金额:
$ 22.83万 - 项目类别:
Environmental Health Research Institute for Nurse and Clinician Scientists (EHRI-NCS)
护士和临床科学家环境健康研究所 (EHRI-NCS)
- 批准号:
10685294 - 财政年份:2021
- 资助金额:
$ 22.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant














{{item.name}}会员




