Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
基本信息
- 批准号:10406274
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive Immune SystemAlgorithmsAntigensAutoimmune DiseasesBindingBinding SitesBioinformaticsBiologyCaliberCatalytic DomainCell TherapyCommunicable DiseasesComplementComplexComputational algorithmDataDiagnosticGoalsHealthHumanImmune systemLaboratoriesMachine LearningMalignant NeoplasmsMolecularMolecular MachinesOrganismPeptide/MHC ComplexProcessProtein EngineeringProteinsResearchSignal TransductionSpecificityStructural ModelsT-Cell ReceptorT-cell receptor repertoireTandem Repeat SequencesTechniquesTimeWorkdesigninsightlensmolecular modelingprediction algorithmprotein foldingprotein structurerapid growthrational designscaffoldsimulationstructural biologytool
项目摘要
PROJECT SUMMARY / ABSTRACT
Structural biology provides a powerful lens through which to view living systems. With advances in algorithms
and computing, molecular simulations have begun to complement traditional experimental approaches as tools
for discovery. At the same time, data-intensive machine learning approaches are becoming increasingly
important in biology, fueled by the rapid growth in high-throughput experimentation. Research in my laboratory
applies techniques from structural biology, molecular simulation, and machine learning to design new protein
structures and predict protein interactions. We design new protein structures in order to better understand the
principles of protein folding and to create highly stable and robust molecular scaffolds for a range of biomedical
applications including multivalent display of binding or signaling domains, hosting of binding or catalytic sites,
and use as building blocks to assemble higher-order complexes. We predict protein interactions in order to
better understand the principles of macromolecular recognition and to gain insight into the process by which
the adaptive immune system discriminates self from non-self in the context of infectious and autoimmune
diseases and cancer. Our research during the project period will be directed toward two broad goals: de novo
design and functionalization of tandem repeat proteins, and prediction of peptide-MHC recognition by T cell
receptors (TCRs). The proposed protein design work builds on our recent progress designing circular tandem
repeat proteins with a range of repeat numbers and diameters and applying these designs as multivalent
display scaffolds for the presentation of binding and signalling domains. Our TCR studies leverage the tools we
have recently developed to model—structurally and bioinformatically—repertoires of T cell receptors and their
peptide:MHC specificity. Looking ahead, I am optimistic that by combining atomically-detailed molecular
simulations and data-intensive machine learning techniques we will be able to generate designed protein
constructs and predictive algorithms that have a significant positive impact on human health.
项目总结/摘要
结构生物学为观察生命系统提供了一个强大的透镜。随着算法的进步
和计算,分子模拟已经开始补充传统的实验方法作为工具,
为了发现。与此同时,数据密集型机器学习方法正变得越来越多,
在生物学中很重要,高通量实验的快速发展推动了这一点。我实验室的研究
应用结构生物学、分子模拟和机器学习技术设计新蛋白质
结构和预测蛋白质相互作用。我们设计新的蛋白质结构,以便更好地了解
蛋白质折叠的原理,并为一系列生物医学领域创造高度稳定和坚固的分子支架。
应用包括结合或信号传导结构域的多价展示,结合或催化位点的宿主,
并用作组装更高阶复合物的构件。我们预测蛋白质相互作用,
更好地理解大分子识别的原理,并深入了解
适应性免疫系统在感染性和自身免疫性疾病的背景下区分自我和非自我,
疾病和癌症。我们在项目期间的研究将朝着两个广泛的目标:重新
串联重复序列蛋白的设计和功能化,以及T细胞对肽-MHC识别的预测
受体(TCR)。建议的蛋白质设计工作建立在我们最近的进展设计环形串联
具有一系列重复数和直径的重复蛋白,并将这些设计作为多价
展示结合和信号传导结构域的支架。我们的TCR研究利用我们的工具,
最近已经发展到在结构和生物信息学上对T细胞受体及其
肽:MHC特异性。展望未来,我乐观地认为,通过结合原子详细的分子
模拟和数据密集型机器学习技术,我们将能够生成设计的蛋白质,
构建和预测算法,对人类健康有重大的积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Bradley其他文献
Philip Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Bradley', 18)}}的其他基金
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10433774 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10569090 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10593429 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10191763 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10707065 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10631595 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
- 批准号:
10641354 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
Rational design and functionalization of circular tandem repeat proteins
环状串联重复蛋白的合理设计和功能化
- 批准号:
9301141 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
- 批准号:
10013238 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
Rational design and functionalization of circular tandem repeat proteins
环状串联重复蛋白的合理设计和功能化
- 批准号:
9897572 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant