Regulation of IL-1β bioactivity by Cysteine S-glutathionylation
半胱氨酸 S-谷胱甘肽化调节 IL-1β 生物活性
基本信息
- 批准号:10405596
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-12 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiochemicalBone MarrowBone Marrow CellsBone Marrow PurgingCellsCysteineDose-LimitingEnzymesEventExtracellular SpaceGenerationsGenetic TranscriptionGlutathioneGlutathione DisulfideGrx1 proteinHematopoietic SystemHost DefenseHydrogen PeroxideIn VitroInfectionInflammasomeInflammationInterleukin-1 betaInvadedLeadMass Spectrum AnalysisMeasuresMediatingModelingModificationMusOxidesPathway interactionsPatientsPattern recognition receptorPhysiologicalPlayPost-Translational Protein ProcessingProductionProtein SProteinsRadiation ToxicityRadiation therapyReactive Oxygen SpeciesRecoveryRegulationReportingResearchRoleSerumStressSulfinic AcidsSulfonic AcidsSystemTestingTherapeutic InterventionThiol Disulfide OxidoreductaseTissuesTranslational ResearchUp-Regulationcell typeclinical applicationclinically relevantcysteine sulfinic acidcytokinedisulfide bondexperimental studyextracellulargamma irradiationglutaredoxinimprovedin vivointravenous injectionirradiationmutantnew therapeutic targetnovelnovel therapeutic interventionoxidationpathogenpreventprotective effectprotein Bthioltransferase
项目摘要
Project Summary
IL-1β is a major player in host defense against invading pathogens. Conversely, excessive IL-1β production
and/or activation can be detrimental to the system, resulting in unwanted and exaggerated tissue inflammation.
Hence, the bioactivity of IL-1β needs to be well controlled. Mechanisms of IL-1β regulation have traditionally
focused on pattern recognition receptor-induced gene transcription and inflammasome-mediated cleavage of
pro-IL-1β. The complete IL-1β cytokine regulatory repertoire is still largely unknown. The objective of the
proposed research is to identify and characterize biochemical events that modulate the bioactivity of mature IL-
1β after its release from the cells. We recently found that cysteine S-glutathionylation of the highly conserved
Cys-188 residue in IL-1β positively regulates IL-1β bioactivity by preventing its irreversible reactive oxygen
species (ROS)-elicited oxidation and deactivation. Protein glutathionylation is dynamic and reversible. We
further demonstrated that Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, is present and
active in the extracellular space in serum and BM, and physiologically regulates IL-1β glutathionylation.
Together, these results lead us to hypothesize that ROS-induced cysteine S-glutathionylation and its
modulation by Grx1 are key regulatory mechanisms controlling IL-1β activity under pathophysiological
conditions. In current study, we will test this hypothesis in a clinically relevant model in which IL-1β activity is
both essential and sufficient for efficient recovery of the hematopoietic system after irradiation. First, we will
determine the role of cysteine S-glutathionylation in regulating the bioactivity of endogenously produced IL-1β
during bone marrow (BM) recovery after irradiation (Aim I). In addition, we will elucidate the function of Grx1 in
regulating S-glutathionylation of endogenously produced IL-1β in BM recovery in irradiated mice. We will also
identify the cell types that produce Grx1 in the BM (Aim II). Finally, we will try to accelerate BM recovery after
irradiation by targeting IL-1β S-glutathionylation. We will first examine whether glutathione intravenous injection
(GSH IV) therapy can elevate IL-1β bioactivity and accelerate the recovery of the hematopoietic system in
irradiated mice. In addition, we will investigate whether IL-1β 188C/S, a mutant form of IL-1β that can not be
oxidized and deactivated, is more potent in eliciting BM protective effect in irradiated mice compared to WT IL-
1β (Aim III). Together, experiments proposed in these three specific aims will provide a better understanding of
the role of ROS-induced cysteine S-glutathionylation in controlling IL-1β activity in vivo in clinically relevant
settings. Toward the translational research paradigm, results from this study will assist us to identify novel
therapeutic targets (e.g. ROS, Grx1, and related pathways) for accelerating BM recovery in patients receiving
radiotherapy.
项目摘要
IL-1β是宿主防御入侵病原体的主要分子。相反,过多的IL-1β产生
和/或激活可能对系统有害,导致不想要的和夸大的组织炎症。
因此,需要很好地控制IL-1β的生物活性。传统上,IL-1β的调节机制
重点研究了模式识别受体诱导的基因转录和炎性小体介导的切割
前白介素1β。完整的IL-1β细胞因子调控谱在很大程度上仍不清楚。该计划的目标是
拟议的研究是为了识别和表征调节成熟IL-2生物活性的生化事件。
从细胞中释放后1β。我们最近发现,S的半胱氨酸-谷胱甘肽高度保守
IL-1β中Cys-188残基通过保护不可逆的活性氧正向调节IL-1β的生物活性
物种(ROS)--引发氧化和失活。蛋白质的谷胱甘肽基化是动态的和可逆的。我们
进一步证明存在谷氧化还蛋白1(Grx1),这是一种催化谷胱甘肽脱硫基化的酶。
活跃于血清和骨髓的胞外间隙,并在生理上调节IL-1β的谷胱甘肽基化。
综上所述,这些结果导致我们假设ROS诱导的半胱氨酸S谷胱甘肽基化和它的
GRX1的调控是病理生理条件下控制IL-1β活性的关键机制
条件。在目前的研究中,我们将在一个临床相关的模型中检验这一假设,在该模型中,IL-1β活性是
既是辐射后有效恢复造血系统所必需的,也是充分的。首先,我们将
半胱氨酸S谷胱甘肽基化在调节内源性IL-1β生物活性中的作用
在照射后骨髓(BM)恢复过程中(目标I)。此外,我们还将阐明Grx1在
辐射后小鼠骨髓恢复过程中内源性IL-1β对S谷胱甘肽的调节作用我们还将
确定BM中产生Grx1的细胞类型(AIM II)。最后,我们将努力加快黑石恢复
照射靶向IL-1βS-谷胱甘肽。我们首先要检查一下静脉注射谷胱甘肽
谷胱甘肽IV治疗可提高IL-1β活性,加速造血系统的恢复
受过辐射的小鼠。此外,我们还将调查IL-1β188C/S,IL-1β的突变形式是否不能
与WT IL-1相比,氧化失活能更有效地诱导照射小鼠骨髓保护作用。
1β(AIM III)。总之,在这三个具体目标中提出的实验将提供更好的理解
ROS诱导的半胱氨酸S-谷胱甘肽基化在体内控制IL-1β活性的作用
设置。对于翻译研究范式,本研究的结果将有助于我们识别小说
促进骨髓恢复的治疗靶点(如ROS、Grx1和相关通路)
放射治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongbo R Luo其他文献
Hongbo R Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongbo R Luo', 18)}}的其他基金
Novel Strategies to Improve Blood Transfusion Practice
改善输血实践的新策略
- 批准号:
10494380 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Novel Strategies to Improve Blood Transfusion Practice
改善输血实践的新策略
- 批准号:
10682582 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10494384 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10682602 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
10229487 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
10687091 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
9894354 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of IL-1β bioactivity by Cysteine S-glutathionylation
半胱氨酸 S-谷胱甘肽化调节 IL-1β 生物活性
- 批准号:
10620756 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 44.25万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Standard Grant