Regulation of IL-1β bioactivity by Cysteine S-glutathionylation
半胱氨酸 S-谷胱甘肽化调节 IL-1β 生物活性
基本信息
- 批准号:10405596
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-12 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiochemicalBone MarrowBone Marrow CellsBone Marrow PurgingCellsCysteineDose-LimitingEnzymesEventExtracellular SpaceGenerationsGenetic TranscriptionGlutathioneGlutathione DisulfideGrx1 proteinHematopoietic SystemHost DefenseHydrogen PeroxideIn VitroInfectionInflammasomeInflammationInterleukin-1 betaInvadedLeadMass Spectrum AnalysisMeasuresMediatingModelingModificationMusOxidesPathway interactionsPatientsPattern recognition receptorPhysiologicalPlayPost-Translational Protein ProcessingProductionProtein SProteinsRadiation ToxicityRadiation therapyReactive Oxygen SpeciesRecoveryRegulationReportingResearchRoleSerumStressSulfinic AcidsSulfonic AcidsSystemTestingTherapeutic InterventionThiol Disulfide OxidoreductaseTissuesTranslational ResearchUp-Regulationcell typeclinical applicationclinically relevantcysteine sulfinic acidcytokinedisulfide bondexperimental studyextracellulargamma irradiationglutaredoxinimprovedin vivointravenous injectionirradiationmutantnew therapeutic targetnovelnovel therapeutic interventionoxidationpathogenpreventprotective effectprotein Bthioltransferase
项目摘要
Project Summary
IL-1β is a major player in host defense against invading pathogens. Conversely, excessive IL-1β production
and/or activation can be detrimental to the system, resulting in unwanted and exaggerated tissue inflammation.
Hence, the bioactivity of IL-1β needs to be well controlled. Mechanisms of IL-1β regulation have traditionally
focused on pattern recognition receptor-induced gene transcription and inflammasome-mediated cleavage of
pro-IL-1β. The complete IL-1β cytokine regulatory repertoire is still largely unknown. The objective of the
proposed research is to identify and characterize biochemical events that modulate the bioactivity of mature IL-
1β after its release from the cells. We recently found that cysteine S-glutathionylation of the highly conserved
Cys-188 residue in IL-1β positively regulates IL-1β bioactivity by preventing its irreversible reactive oxygen
species (ROS)-elicited oxidation and deactivation. Protein glutathionylation is dynamic and reversible. We
further demonstrated that Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, is present and
active in the extracellular space in serum and BM, and physiologically regulates IL-1β glutathionylation.
Together, these results lead us to hypothesize that ROS-induced cysteine S-glutathionylation and its
modulation by Grx1 are key regulatory mechanisms controlling IL-1β activity under pathophysiological
conditions. In current study, we will test this hypothesis in a clinically relevant model in which IL-1β activity is
both essential and sufficient for efficient recovery of the hematopoietic system after irradiation. First, we will
determine the role of cysteine S-glutathionylation in regulating the bioactivity of endogenously produced IL-1β
during bone marrow (BM) recovery after irradiation (Aim I). In addition, we will elucidate the function of Grx1 in
regulating S-glutathionylation of endogenously produced IL-1β in BM recovery in irradiated mice. We will also
identify the cell types that produce Grx1 in the BM (Aim II). Finally, we will try to accelerate BM recovery after
irradiation by targeting IL-1β S-glutathionylation. We will first examine whether glutathione intravenous injection
(GSH IV) therapy can elevate IL-1β bioactivity and accelerate the recovery of the hematopoietic system in
irradiated mice. In addition, we will investigate whether IL-1β 188C/S, a mutant form of IL-1β that can not be
oxidized and deactivated, is more potent in eliciting BM protective effect in irradiated mice compared to WT IL-
1β (Aim III). Together, experiments proposed in these three specific aims will provide a better understanding of
the role of ROS-induced cysteine S-glutathionylation in controlling IL-1β activity in vivo in clinically relevant
settings. Toward the translational research paradigm, results from this study will assist us to identify novel
therapeutic targets (e.g. ROS, Grx1, and related pathways) for accelerating BM recovery in patients receiving
radiotherapy.
项目概要
IL-1β 是宿主防御入侵病原体的主要参与者。相反,IL-1β 产生过多
和/或激活可能对系统有害,导致不必要的和夸大的组织炎症。
因此,需要很好地控制IL-1β的生物活性。 IL-1β 的调节机制传统上被认为是
专注于模式识别受体诱导的基因转录和炎性体介导的裂解
IL-1β原。完整的 IL-1β 细胞因子调节指令在很大程度上仍然未知。该计划的目标
拟议的研究旨在识别和表征调节成熟IL-生物活性的生化事件
1β从细胞中释放后。我们最近发现高度保守的半胱氨酸S-谷胱甘肽化
IL-1β 中的 Cys-188 残基通过阻止其不可逆活性氧来正向调节 IL-1β 生物活性
物种(ROS)引起氧化和失活。蛋白质谷胱甘肽化是动态且可逆的。我们
进一步证明谷氧还蛋白 1 (Grx1)(一种催化去谷胱甘肽化的酶)的存在并且
在血清和 BM 的细胞外空间中活跃,并在生理上调节 IL-1β 谷胱甘肽化。
总之,这些结果使我们推测 ROS 诱导的半胱氨酸 S-谷胱甘肽化及其
Grx1 的调节是病理生理条件下控制 IL-1β 活性的关键调节机制
状况。在当前的研究中,我们将在临床相关模型中检验这一假设,其中 IL-1β 活性为
对于辐射后造血系统的有效恢复来说是必要且充分的。首先,我们将
确定半胱氨酸 S-谷胱甘肽化在调节内源产生的 IL-1β 生物活性中的作用
照射后骨髓 (BM) 恢复期间(目标 I)。此外,我们将阐明 Grx1 的功能
在受辐射小鼠的 BM 恢复中调节内源产生的 IL-1β 的 S-谷胱甘肽化。我们还将
识别 BM 中产生 Grx1 的细胞类型(目标 II)。最后,我们会尽力加速BM恢复
通过靶向 IL-1β S-谷胱甘肽进行照射。我们首先检查是否可以静脉注射谷胱甘肽
(GSH IV)治疗可提高IL-1β生物活性并加速造血系统的恢复
受辐射的老鼠。此外,我们将研究IL-1β 188C/S(IL-1β的突变形式)是否不能被
被氧化和失活,与 WT IL- 相比,在激发受辐射小鼠的 BM 保护作用方面更有效
1β(目标 III)。总之,在这三个具体目标中提出的实验将提供更好的理解
ROS诱导的半胱氨酸S-谷胱甘肽化在临床相关体内控制IL-1β活性中的作用
设置。对于转化研究范式,这项研究的结果将帮助我们识别新颖的
加速接受治疗的患者的 BM 恢复的治疗靶点(例如 ROS、Grx1 和相关途径)
放射治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongbo R Luo其他文献
Hongbo R Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongbo R Luo', 18)}}的其他基金
Novel Strategies to Improve Blood Transfusion Practice
改善输血实践的新策略
- 批准号:
10494380 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Novel Strategies to Improve Blood Transfusion Practice
改善输血实践的新策略
- 批准号:
10682582 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10494384 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
- 批准号:
10682602 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
10229487 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
10687091 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of neutrophil death by GSDMD in Candida albicans infection
GSDMD 对白色念珠菌感染中性粒细胞死亡的调节
- 批准号:
9894354 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
Regulation of IL-1β bioactivity by Cysteine S-glutathionylation
半胱氨酸 S-谷胱甘肽化调节 IL-1β 生物活性
- 批准号:
10620756 - 财政年份:2019
- 资助金额:
$ 44.25万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 44.25万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Standard Grant














{{item.name}}会员




