Mechanisms of Mitotic Fidelity
有丝分裂保真度的机制
基本信息
- 批准号:10405295
- 负责人:
- 金额:$ 44.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAneuploidyBindingBiochemicalBiological AssayBiological ModelsCell DeathCellsCentrosomeChromosome SegregationChromosomesComplementCongenital AbnormalityDNA RepairDefectEnsureGenetic MaterialsGoalsImageIndividualLeadMeiosisMicrotubulesMitosisMitoticMitotic spindleModelingMolecularMolecular MotorsMorphogenesisMotorMotor ActivityNormal CellOrganismOutcome StudyPathway interactionsPlayPloidiesProcessProteinsRoleStructureVariantcancer cellcell typedaughter cellgenome integrityinsightinterestmotor controloverexpressionprotein functionprotein protein interactionsegregationtargeted treatmenttherapeutic developmenttumorigenesis
项目摘要
Project Summary
The major goal of mitosis is to distribute the genetic material accurately between two daughter cells. Defects
in meiosis or mitosis lead to aneuploidy, which is a significant cause of birth defects and is a hallmark of
tumorigenesis. Critical to this process is the mitotic spindle, which is a cellular macromolecular machine
tasked with both alignment and segregation of the genetic material. Even though the spindle structure and
molecular players are highly conserved across organisms, the detailed organization of the spindle and protein
function can vary even between cell types within an organism. This variation suggests that cells have evolved
multiple pathways to ensure the proper distribution of genetic material. My lab has a long-standing interest in
understanding how molecular motor proteins organize spindle structure, regulate microtubule dynamics in the
spindle, and contribute to accurate chromosome segregation during mitosis. These studies are important
because motor proteins not only play fundamental roles in spindle organization and function, but also because
they are often overexpressed in cancer cells and may be valuable targets for therapeutic development. In the
next five years, our studies will focus on three key questions. 1) How is molecular motor activity spatially and
temporally regulated? An important goal is to understand not only how molecular motors function individually,
but also how groups of motors cooperate with their binding partner to regulate spindle function. Our studies
will define critical networks between biochemical activities of motors and cellular readouts of that activity. 2)
How do regulated microtubule dynamics and centrosome clustering enhance mitotic fidelity? The current
model is that cancer cells generate low levels of aneuploidy to drive their survival while limiting severe
aneuploidy that would ensure cell death. We will uncover how key molecular motors impact mitotic fidelity by
dissecting their function in mitosis and DNA damage repair. In addition, we will examine how centrosome
clustering restricts severe aneuploidy in cells with amplified centrosomes. 3) How is accurate chromosome
segregation impacted by increased chromosome load in cells with altered ploidy? An important but
understudied problem is to elucidate how the normal complement of cellular proteins handles aneuploidy in
both normal and cancer cells and how changes in the relative expression levels of key players impact
accurate segregation of the genetic material. We will take advantage of our ability to generate cells with
different levels of ploidy to understand how changing expression of key molecular motors is impacted by
increased chromosome load and how that affects mitotic fidelity. Our proposed studies take advantage of our
toolbox of key molecules, rigorous biochemical assays, high quality imaging, and diverse model systems to
define the function of motors and regulatory networks that control mitotic fidelity. The outcome of these studies
will define mechanisms by which distinct protein-protein interaction networks impact spindle morphogenesis
and will provide new insights into how cells maintain genome integrity.
项目摘要
有丝分裂的主要目的是将遗传物质准确地分配到两个子细胞之间。缺陷
在减数分裂或有丝分裂中导致非整倍体,这是出生缺陷重要原因,
肿瘤发生这个过程的关键是有丝分裂纺锤体,这是一个细胞大分子机器
负责遗传物质的排列和分离。尽管主轴结构和
分子参与者在生物体中高度保守,纺锤体和蛋白质的详细组织
甚至在生物体内的细胞类型之间,功能也可以变化。这种变异表明细胞已经进化
多种途径,以确保遗传物质的适当分配。我的实验室一直对
了解分子马达蛋白如何组织纺锤体结构,调节微管动力学,
纺锤体,并有助于在有丝分裂过程中准确的染色体分离。这些研究很重要
因为马达蛋白不仅在纺锤体的组织和功能中起着重要作用,
它们通常在癌细胞中过表达,并且可能是治疗开发的有价值的靶标。在
未来五年,我们的研究将集中在三个关键问题上。1)分子马达活动是如何在空间上和
在时间上规范?一个重要的目标是不仅要了解分子马达是如何单独发挥作用的,
而且还包括马达组如何与它们的结合伙伴协作以调节纺锤体功能。我们的研究
将定义发动机的生化活动和该活动的细胞读数之间的关键网络。(二)
调控微管动力学和中心体聚集如何增强有丝分裂的保真度?当前
模型是,癌细胞产生低水平的非整倍体,以推动其生存,同时限制严重的
非整倍性导致细胞死亡我们将揭示关键分子马达如何影响有丝分裂保真度,
剖析它们在有丝分裂和DNA损伤修复中的功能。此外,我们将研究中心体如何
成簇限制了具有扩增的中心体的细胞中的严重非整倍性。3)如何准确染色体
倍性改变的细胞中染色体负荷增加会影响分离吗?一个重要但
研究不足的问题是阐明细胞蛋白质的正常补体如何处理非整倍体,
正常细胞和癌细胞以及关键参与者的相对表达水平的变化如何影响
遗传物质的精确分离。我们将利用我们的能力,
不同的倍性水平,以了解关键分子马达的表达变化如何受到
染色体负荷增加以及这如何影响有丝分裂保真度。我们建议的研究利用我们的
关键分子的工具箱,严格的生化分析,高质量的成像和多样化的模型系统,
定义控制有丝分裂保真度的马达和调节网络的功能。这些研究的结果
将定义不同的蛋白质-蛋白质相互作用网络影响纺锤体形态发生的机制
并将为细胞如何保持基因组完整性提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire E Walczak其他文献
Claire E Walczak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire E Walczak', 18)}}的其他基金
FASEB SRC on Mitosis: Spindle Assembly and Function
FASEB SRC 关于有丝分裂:纺锤体的组装和功能
- 批准号:
8397311 - 财政年份:2012
- 资助金额:
$ 44.46万 - 项目类别:
Acquisition of a DeltaVision OMX Super-Resolution Imaging System
收购 DeltaVision OMX 超分辨率成像系统
- 批准号:
7827488 - 财政年份:2010
- 资助金额:
$ 44.46万 - 项目类别:
FASEB Meeting on Mitosis: Spindle Assembly and Function
FASEB 有丝分裂会议:纺锤体组装和功能
- 批准号:
7745789 - 财政年份:2009
- 资助金额:
$ 44.46万 - 项目类别:
Acquisition of a High-throughput Confocal Imaging System
获取高通量共焦成像系统
- 批准号:
7497370 - 财政年份:2008
- 资助金额:
$ 44.46万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别: