Role of noncoding RNA decay in glucose homeostasis
非编码RNA衰变在葡萄糖稳态中的作用
基本信息
- 批准号:10413569
- 负责人:
- 金额:$ 11.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-exoribonuclease7SL RNAAffectBiochemicalBiogenesisBiologicalBiological ProcessBlood GlucoseCalciumCellsComplexDefectDepositionDevelopmentDiabetes MellitusDiseaseEmbryoEndoplasmic ReticulumEnsureEnzymesFetal MacrosomiaGene MutationGenesGenetic TranscriptionGerm-Line MutationGlucoseHomeostasisHumanHyperplasiaHypoglycemiaImpairmentIn VitroInsulinIon ChannelIslet CellIslets of LangerhansKidneyKnock-outKnockout MiceKnowledgeLabelLifeLinkLiverLiver FibrosisMass Spectrum AnalysisMediatingMetabolicMetabolic DiseasesMetabolismModificationMolecularMusMutationNeonatalNucleotidesOrganOrganismPancreasPathway interactionsPatientsPerinatal mortality demographicsPerlman syndromePhysiologicalPhysiologyPolyhydramniosProcessProteinsQuality ControlRNARNA BindingRNA DecayRNA immunoprecipitation sequencingRNA metabolismRegulationRenal functionReportingResearch Project GrantsResolutionRibosomesRoleSamplingSignal Recognition ParticleSignal TransductionStructureSymptomsSystemTailTissuesTranscriptional RegulationTranslatingTranslationsUntranslated RNAUridineVisceromegalybaseblood glucose regulationdevelopmental diseasein vivoinnovationinsulin regulationinsulin secretionmRNA Expressionmouse modelnovelresponseskillstherapy development
项目摘要
Project Summary/Abstract
Regulation of RNA biogenesis and decay is critical for cellular homeostasis and dysregulation in these
processes leads to a variety of human developmental and metabolic disorders. While the transcriptional
regulation of RNA expression has been widely studied, the importance of RNA decay is only beginning
to be appreciated. Specifically, studying the regulation of noncoding RNA (ncRNA) expression and
decay is hampered due to limitations caused by their size, abundance, modifications, and/or structural
complexities. We have recently identified a 3’-to-5’ exoribonuclease enzyme, Dis3l2, as a major player
in ncRNA decay. In that study, I performed a global identification of Dis3l2 substrates and found that
the majority of Dis3l2 targets are ncRNAs. This led to our identification of DIS3L2-Mediated Decay
(DMD) as a quality control pathway that ensures the fidelity of ncRNAs. Germline mutations in human
DIS3L2 gene have been linked to the Perlman syndrome that is a rare but devastating disorder
associated with early lethality, hypoglycemia, kidney abnormalities, and hyperplasia in pancreas. These
suggest that dysregulated ncRNA decay in Dis3l2-depleted patients disrupts metabolic homeostasis.
The main aim of this research project is to unravel how Dis3l2 deficiency leads to the impaired function
of metabolic organs remains unknown. To understand the role of ncRNA decay in metabolism and
specially in glucose homeostasis, I plan to combine several innovative approaches to investigate the
molecular and physiological functions of Dis3l2 enzyme using in vitro and in vivo systems. I have
identified the 7SL RNA component of the signal recognition particle (SRP), a critical player in
endoplasmic reticulum (ER)-mediated translation, as a major substrate of Dis3l2. I discovered that in
the absence of Dis3l2, aberrant 7SL RNAs accumulate in the cells and perturb ER-mediated protein
translation. We have generated a Dis3l2 knockout (KO) mouse model of Perlman syndrome that
manifests the main symptoms of human patients including perinatal lethality, kidney overgrowth,
abrogated regulation of blood glucose and insulin secretion. Moreover, Dis3l2 depletion caused
impaired ER-translation, ER-calcium homeostasis and insulin secretion in vitro. This proves a direct
role of Dis3l2 in regulation of insulin secretion in response to glucose stimulation. I will utilize Dis3l2 KO
mouse model to further determine the effect of impaired ER-mediated protein translation on cellular
and organism physiology. My hypothesis is that Dis3l2 depletion impairs homeostatic ER-associated
protein translation due to an accumulation of aberrant 7SL RNAs. This proposal is innovative because
the involvement of the Dis3l2-mediated ncRNA decay in glucose homeostasis has not been previously
reported. Successful completion of this proposal has broad implications in understanding the basis of
glucose homeostasis and have a significant impact on the development of treatments for diabetes.
项目总结/摘要
RNA生物合成和衰变的调节对于这些细胞中的细胞内稳态和失调至关重要。
这一过程导致各种人类发育和代谢紊乱。虽然转录
RNA表达的调控已经被广泛研究,RNA衰变的重要性才刚刚开始
被人欣赏具体来说,研究非编码RNA(ncRNA)表达的调控,
由于它们的大小、丰度、修饰和/或结构的限制,
复杂性我们最近已经鉴定了一种3 '至5'核糖核酸外切酶Dis 3l 2作为主要参与者,
在ncRNA衰变中。在该研究中,我对Dis 3l 2底物进行了全面鉴定,发现
大多数Dis 312靶是ncRNA。这导致我们鉴定DIS 3L 2介导的衰变
(DMD)作为质量控制途径,确保ncRNA的保真度。人类生殖系突变
DIS 3L 2基因与帕尔曼综合征有关,帕尔曼综合征是一种罕见但具有破坏性的疾病
与早期致死、低血糖、肾脏异常和胰腺增生相关。这些
表明Dis 312缺失患者中失调的ncRNA衰变破坏代谢稳态。
该研究项目的主要目的是揭示Dis 3l 2缺陷如何导致功能受损。
仍然未知。了解ncRNA衰变在代谢中的作用,
特别是在葡萄糖稳态,我计划联合收割机几个创新的方法来研究,
分子和生理功能的Dis 3L 2酶使用在体外和体内系统。我有
确定了信号识别颗粒(SRP)的7SL RNA组分,这是一个关键的参与者,
内质网(ER)介导的翻译,作为Dis 3l 2的主要底物。我发现,在
在缺乏Dis 312的情况下,异常的7SL RNA在细胞中积累并扰乱ER介导的蛋白
翻译.我们已经产生了帕尔曼综合征的Dis 312敲除(KO)小鼠模型,
表现出人类患者的主要症状,包括围产期死亡,肾过度生长,
取消对血糖和胰岛素分泌的调节。此外,Dis 3l 2缺失导致
体外ER-翻译、ER-钙稳态和胰岛素分泌受损。这直接证明了
Dis 3l 2在响应于葡萄糖刺激的胰岛素分泌调节中的作用。我将使用Dis 3l 2 KO
小鼠模型,以进一步确定受损的ER介导的蛋白质翻译对细胞增殖的影响。
和生物生理学。我的假设是,Dis 3l 2缺失损害了稳态ER相关的
由于异常7SL RNA的积累而导致蛋白质翻译。这是一项创新,因为
Dis 312介导的ncRNA衰变参与葡萄糖稳态以前没有被发现,
报道成功地完成这一建议对理解《公约》的基础具有广泛的意义。
葡萄糖体内平衡,并对糖尿病治疗的发展具有显著影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Pirouz其他文献
Mehdi Pirouz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Pirouz', 18)}}的其他基金
Role of noncoding RNA decay in glucose homeostasis
非编码RNA衰变在葡萄糖稳态中的作用
- 批准号:
9977518 - 财政年份:2020
- 资助金额:
$ 11.32万 - 项目类别:
相似海外基金
Mechanistic insights into multifaceted roles of coronavirus exoribonuclease complex
冠状病毒外核糖核酸酶复合物多方面作用的机制见解
- 批准号:
10713523 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10525101 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
Novel Function(s) of Arenavirus NP Exoribonuclease
Arenavirus NP 核糖核酸外切酶的新功能
- 批准号:
10624457 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10215766 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Exploring the Coronavirus Exoribonuclease as an Antiviral Target
探索冠状病毒外核糖核酸酶作为抗病毒靶点
- 批准号:
10238324 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10656174 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Characterizing the XRN1 exoribonuclease as a therapeutic target in non-small cell lung cancer
将 XRN1 核糖核酸外切酶表征为非小细胞肺癌的治疗靶点
- 批准号:
10370384 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Exploiting the SARS-CoV-2 nsp14 3'-5'-exoribonuclease as a target for antiviral chemotherapy
利用 SARS-CoV-2 nsp14 3-5-核糖核酸外切酶作为抗病毒化疗的靶点
- 批准号:
MR/V036904/1 - 财政年份:2020
- 资助金额:
$ 11.32万 - 项目类别:
Research Grant
Dissecting the role of the coronavirus proofreading exoribonuclease in RNA recombination
剖析冠状病毒校对核糖核酸酶在 RNA 重组中的作用
- 批准号:
10268982 - 财政年份:2020
- 资助金额:
$ 11.32万 - 项目类别:
Flow responsive endothelial Pnpt1: an exoribonuclease that regulates mitochondrial function and vascular disease
流量响应内皮 Pnpt1:一种调节线粒体功能和血管疾病的核糖核酸外切酶
- 批准号:
9750410 - 财政年份:2018
- 资助金额:
$ 11.32万 - 项目类别: