Dendritic Computation and Representation of Head Direction in Retrosplenial Cortex
压后皮质头部方向的树突计算和表示
基本信息
- 批准号:10408825
- 负责人:
- 金额:$ 41.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAlzheimer&aposs DiseaseAnatomyAnimalsAnteriorApicalAreaAttention deficit hyperactivity disorderAxonBehaviorBiological ModelsBrainBrain DiseasesBrain regionCellsCodeComplexDendritesDetectionDiseaseDistalDistantEnvironmentExhibitsFutureHeadImageIndividualInvestigationLearningMeasuresMethodsModelingMotionMusNeuronsPatternPlayPopulationPositioning AttributeProcessRattusRecurrenceResolutionRoleRotationSchizophreniaSignal TransductionSourceStreamSumSynapsesTechnologyTestingThalamic structureVisualVisuospatialWorkartificial neural networkcell cortexexperimental studyflexibilityin vivoinsightneural circuitneuronal cell bodynovelnovel strategiespostsynapticreceptive fieldsensory cortextooltwo-photonvisual informationvisual motor
项目摘要
The mammalian cortex plays a critical role in integrating multiple streams of information to guide adaptive
behavior. For example, head direction (HD) information is combined with visual and spatial input in the mouse
retrosplenial cortex (RSC). Accurate integration of these signals is a necessary component of navigation:
recognizing a distant landmark while facing north vs. facing south has very different interpretations for one's
position and future actions. However, the mechanisms by which any cortical association area integrates different
inputs at the level of individual neurons during behavior is unknown. RSC is therefore a compelling model system
in which to test general associative computations during a complex behavior: the combination of visual and HD
information during navigation.
Anatomical evidence suggests that HD inputs computed in the anterior thalamus make their synapses at
distal apical dendrites in RSC, while visual and motor synapses are located closer to the somas of RSC principal
neurons. This arrangement suggests that nonlinear dendritic integration may be used by RSC to combine HD
with other inputs. Active dendritic integration is theorized to allow single neurons to respond flexibly to different
combinations of input, where the state of one input nonlinearly influences the impact of another input. Our
overarching hypothesis is that such mechanisms could work in concert with neural circuit computations to
implement context-dependent cortical computations. Congruent with this idea, RSC neurons in navigating rats
exhibit complex conjunctive receptive fields, a feature that is lacking from commonly studied primary sensory
cortices. RSC is therefore an ideal area to evaluate the role of dendrites in associative computations during
navigation. However, current methods are not well-suited to this level of investigation: they either allow mice to
behave freely or they achieve sub-cellular resolution. This has led to a critical gap in our understanding of
navigation, and by extension, associative cortex function. We have recently developed technology that bridges
this gap: an animal-actuated rotating headpost that allows mice to engage in 2-D navigation by freely turning
their head during conventional 2-photon imaging. We will use this new approach to test the hypothesis that
neurons in RSC use sub-cellular processing to flexibly combine HD and visual information during navigation
behavior. These experiments will provide new insights into cellular- and circuit-level mechanisms of navigation,
and of associative cortical function in general. Results from this project will be valuable for understanding brain
disease states as well as for building biologically-inspired artificial neural networks.
哺乳动物大脑皮层在整合多个信息流以引导适应性
行为。例如,头部方向(HD)信息与鼠标中的视觉和空间输入相结合
脾后皮质(RSC)。这些信号的精确集成是导航的必要组件:
识别遥远的地标时,面朝北和面朝南,对一个人的理解截然不同
立场和未来行动。然而,任何皮质关联区整合的机制不同
在行为过程中,单个神经元水平的输入是未知的。因此,RSC是一个引人注目的模型系统
其中测试复杂行为期间的一般关联计算:视觉和高清的组合
导航期间的信息。
解剖学证据表明,在丘脑前部计算的HD输入使它们的突触在
RSC的远端顶端树突,而视觉突触和运动性突触位于RSC主干的胞体附近
神经元。这一安排表明,RSC可以使用非线性树枝状整合来结合HD
使用其他输入。主动树突整合的理论是允许单个神经元灵活地对不同的
一种输入组合,其中一种输入的状态非线性地影响另一种输入的影响。我们的
最重要的假设是,这种机制可以与神经电路计算协同工作,以
实施上下文相关的皮质计算。与这一观点相一致的是,导航大鼠的RSC神经元
表现出复杂的连接感受场,这是通常研究的初级感觉所缺乏的特征
皮质。因此,RSC是评估树枝状结构在关联计算中的作用的理想区域
导航。然而,目前的方法并不完全适合这种水平的调查:它们要么允许小鼠
要么自由行动,要么实现亚细胞分辨率。这导致了我们对
导航,以此类推,联想皮质的功能。我们最近开发了一种技术,可以在
这个缺口:一种动物驱动的旋转头柱,允许老鼠通过自由旋转进行二维导航
他们的头部在常规的双光子成像过程中。我们将使用这种新方法来检验假设
RSC中的神经元在导航过程中使用亚细胞处理灵活地结合HD和视觉信息
行为。这些实验将为细胞和电路级别的导航机制提供新的见解,
和大体上的联合皮质功能。这个项目的结果将对理解大脑有价值。
疾病状态以及构建生物启发的人工神经网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Thomas Harnett其他文献
Mark Thomas Harnett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Thomas Harnett', 18)}}的其他基金
Dendritic Computation and Representation of Head Direction in Retrosplenial Cortex
压后皮质头部方向的树突计算和表示
- 批准号:
10198060 - 财政年份:2019
- 资助金额:
$ 41.28万 - 项目类别:
Dendritic Computation and Representation of Head Direction in Retrosplenial Cortex
压后皮质头部方向的树突计算和表示
- 批准号:
10630181 - 财政年份:2019
- 资助金额:
$ 41.28万 - 项目类别:
A dendritic mechanism for cholinergic neuromodulation of cortical function
皮质功能胆碱能神经调节的树突机制
- 批准号:
9898496 - 财政年份:2018
- 资助金额:
$ 41.28万 - 项目类别:
A dendritic mechanism for cholinergic neuromodulation of cortical function
皮质功能胆碱能神经调节的树突机制
- 批准号:
10374876 - 财政年份:2018
- 资助金额:
$ 41.28万 - 项目类别:














{{item.name}}会员




