Development of anti-sense oligonucleotides as a therapeutic for cancer pain through selective block of sodium channel pain targets

开发反义寡核苷酸通过选择性阻断钠通道疼痛靶标来治疗癌症疼痛

基本信息

  • 批准号:
    10410515
  • 负责人:
  • 金额:
    $ 99.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-07 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary: Development of anti-sense oligonucleotides as a therapeutic for cancer pain by selectively reducing sodium channel expression Effective treatment of cancer pain is a large unmet medical need, as opioids, the current standard of care lack efficacy and cause addiction. For end-of-life cancer patients and estrogen receptor- positive breast cancer patients with long life expectancy, more effective therapeutic approaches for pain are needed. Antisense oligonucleotides (ASOs) bind to and induce degradation of RNA transcripts with specific sequences, enabling selective protein knockdown (KD) with long duration of action (weeks or months), to deliver long-term relief. ASOs can also be used in combination, to reduce the expression of multiple proteins for increased efficacy. As a modality, ASOs have been successfully applied in the clinic to treat severe neurological disease. We target the voltage gated sodium channels (Navs) selectively expressed in dorsal root ganglion neurons (Nav1.7, Nav1.8 and Nav1.9), which are implicated in pain transmission and specifically in cancer pain. Reduction of channel expression aims to overcome the limitations of small molecule state-dependent channel blockers, if the channel should be blocked in a state-independent manner for efficacy. Preliminary results with our designed ASOs show >70% mRNA KD for several Navs in rat dorsal root ganglion sensory neurons (DRGs). We apply a novel platform to design ASOs for specific knockdown of Nav channels. For pain targets and indications, QuellTx also has an exclusive worldwide license to breakthrough technology: (i) An in vitro cellular model for cancer pain (developed through SBIR funding by NCI), where primary DRG neurons are bathed in a physiologically-relevant mixture of inflammatory mediators secreted by tumors, or ‘cancer-SPARC’. The SPARC- treated neurons become hyperexcitable, mimicking the cellular pain response. (ii) An all optical electrophysiology high throughput readout for neuronal excitability (Optopatch), allowing recordings from 100s of individual neurons in parallel with high temporal resolution. This platform enables us to determine the impact of modulating expression of Nav1.7, 1.8 and 1.9, alone or in combination, on the pain-in-a-dish phenotype. In Phase I we propose to leverage our ASO design capabilities, combined with the breakthrough technology to: (a) identify ASOs for selective modulation of expression of Nav channel pain targets and (b) determine the combination of ASOs and %mRNA knock down for maximal phenotypic effect in vitro. We will select ASOs that efficiently knockdown Nav channels and reverse the pain phenotype induced by cancer-SPARC. In Phase II we will determine the PK/PD (%mRNA KD) in rats, and the % mRNA KD needed for efficacy in a rat model of cancer pain, while optimizing human cross-reacting with cynmolgous monkey (cyno) ASOs for efficacy in human DRG neuronal models of pain. Our ultimate goal is to advance optimized ASOs to IND enabling toxicity studies in rat and cynos, leading to a therapeutic to treat cancer pain in patients.
项目摘要:开发反义寡核苷酸作为癌症疼痛的治疗药物 选择性降低钠通道的表达 癌症疼痛的有效治疗是一个巨大的未得到满足的医疗需求,作为阿片类药物,目前的护理标准缺乏 功效和致瘾因素。适用于临终癌症患者和雌激素受体阳性的乳腺癌 对于预期寿命较长的患者,需要更有效的疼痛治疗方法。反义 寡核苷酸(ASO)结合并诱导具有特定序列的RNA转录本的降解,使 选择性蛋白质击倒(KD),作用时间长(几周或几个月),可提供长期缓解。 ASOS也可以联合使用,以减少多种蛋白质的表达,以提高疗效。AS ASOS作为一种治疗手段,已成功应用于临床治疗严重的神经系统疾病。 我们针对背根神经节神经元选择性表达的电压门控性钠通道(NAV) (Nav1.7、Nav1.8和Nav1.9),它们与疼痛传递有关,特别是与癌症疼痛有关。 减少通道表达旨在克服小分子状态依赖通道的局限性 阻滞剂,如果通道应该以状态独立的方式被阻断以达到疗效。初步结果: 我们设计的ASO显示了大鼠背根神经节感觉神经元(DRGs)中几种NAV的70%mRNAKD。 我们应用一种新的平台来设计针对特定NAV通道的击穿的ASO。对于疼痛目标和 适应症,QuellTx还拥有突破性技术的全球独家许可证:(I)体外细胞 癌症疼痛模型(由NCI通过SBIR资金开发),其中初级DRG神经元沐浴在 由肿瘤分泌的与生理相关的炎性介质的混合物,或“癌症-SPARC”。SPARC- 经过处理的神经元变得极度兴奋,模仿细胞的疼痛反应。(Ii)全光电生理学 神经元兴奋性的高通量读数(Optopatch),允许记录100个单个神经元 与高时间分辨率并行。这个平台使我们能够确定调制的影响 Nav1.7、1.8和1.9单独或联合表达于盘痛表型。 在第一阶段,我们建议利用我们的ASO设计能力,结合突破性技术来: (A)确定用于选择性调节NAV通道疼痛靶标表达的ASO,以及(B)确定 ASOS和%信使核糖核酸的组合在体外可获得最大的表型效应。我们将选择ASO 有效阻断NAV通道,逆转癌症引起的疼痛表型--SPARC。在第二阶段,我们 将确定大鼠的PK/PD(%信使核糖核酸Kd),以及在大鼠癌症模型中疗效所需的%信使核糖核酸Kd 疼痛,同时优化人类与食蟹猴(Cyno)ASOS的交叉反应,以研究其对人DRG的疗效 疼痛的神经元模型。我们的最终目标是将优化的ASO推进到IND启用的大鼠毒性研究 和Cynos,导致了一种治疗癌症疼痛的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Owen B. McManus其他文献

Calcium-activated potassium channels: Regulation by calcium
Fractal models, Markov models, and channel kinetics.
分形模型、马尔可夫模型和通道动力学。
  • DOI:
    10.1016/s0006-3495(89)82817-6
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Owen B. McManus;C. Spivak;A. Blatz;David S. Weiss;K. Magleby
  • 通讯作者:
    K. Magleby
Correlation of Optical and Automated Patch Clamp Electrophysiology for Identification of Na<sub>V</sub>1.7 Inhibitors
  • DOI:
    10.1177/2472555220914532
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hongkang Zhang;Bryan D. Moyer;Violeta Yu;Joseph G. McGivern;Michael Jarosh;Christopher A. Werley;Vivian C. Hecht;Ryan J. Babcock;Kevin Dong;Graham T. Dempsey;Owen B. McManus;Chris M. Hempel
  • 通讯作者:
    Chris M. Hempel
High-conductance calcium-activated potassium channels; Structure, pharmacology, and function
  • DOI:
    10.1007/bf02110699
  • 发表时间:
    1996-06-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Gregory J. Kaczorowski;Hans -Günther Knaus;Reid J. Leonard;Owen B. McManus;Maria L. Garcia
  • 通讯作者:
    Maria L. Garcia

Owen B. McManus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Owen B. McManus', 18)}}的其他基金

Development of anti-sense oligonucleotides as a therapeutic for cancer pain through selective block of sodium channel pain targets
开发反义寡核苷酸通过选择性阻断钠通道疼痛靶标来治疗癌症疼痛
  • 批准号:
    10081895
  • 财政年份:
    2020
  • 资助金额:
    $ 99.53万
  • 项目类别:
Development of anti-sense oligonucleotides as a therapeutic for cancer pain through selective block of sodium channel pain targets
开发反义寡核苷酸通过选择性阻断钠通道疼痛靶标来治疗癌症疼痛
  • 批准号:
    10402419
  • 财政年份:
    2020
  • 资助金额:
    $ 99.53万
  • 项目类别:
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology.
使用全光学电生理学进行骨关节炎疼痛治疗的表型筛选。
  • 批准号:
    10246487
  • 财政年份:
    2019
  • 资助金额:
    $ 99.53万
  • 项目类别:
An all-optical electrophysiology platform for the discovery of pain therapeutics
用于发现疼痛疗法的全光学电生理学平台
  • 批准号:
    10001039
  • 财政年份:
    2018
  • 资助金额:
    $ 99.53万
  • 项目类别:
An all-optical electrophysiology platform for the discovery of pain therapeutics
用于发现疼痛疗法的全光学电生理学平台
  • 批准号:
    9930168
  • 财政年份:
    2018
  • 资助金额:
    $ 99.53万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 99.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了