Structural Circuits Core
结构电路核心
基本信息
- 批准号:10413185
- 负责人:
- 金额:$ 30.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAntibodiesAtlasesBase of the BrainBehaviorBrainBrain MappingBrain imagingBrain regionCollectionCommunitiesComputer softwareCustomDataData AnalysesData SetDevelopmentDisadvantagedDrug AddictionEffectivenessEquipmentGoalsGrantHistologyImageIndividualInformaticsInfrastructureInstitutesLabelLaboratoriesMedicalMethodologyMethodsMicroscopyMinnesotaMissionModernizationMusNervous system structureNeuraxisNeurogliaNeuronsOpticsPathway interactionsPenetrationPhotobleachingProceduresProtocols documentationPublishingRattusRefractive IndicesRegistriesResearch PersonnelResolutionResourcesScanningServicesSoftware DesignSpecificityStandardizationStructureSupercomputingTechniquesTechnologyThree-Dimensional ImagingTimeTissuesUniversitiesViraladdictionbasebrain circuitrycomputational platformconnectomedata acquisitiondata handlingdata repositorydesignequipment acquisitionexperimental studyimaging approachimaging facilitiesimaging modalityimaging systemimprovedinnovationinstrumentationlarge datasetsmemberneural circuitnew technologynonhuman primateportabilityrepositorysoftware developmenttissue preparation
项目摘要
PROJECT SUMMARY: Structural Circuits Core
Modern tissue clearing and imaging methods provide the potential for a wealth of information regarding nervous
system anatomy and function. However, to best utilize such methods, understanding the options for tissue
clearing, and the advantages and disadvantages of various imaging methods need to be appreciated.
Furthermore, data handling, analysis, and storage all provide significant obstacles when attempting to make full
use of the capabilities of these modern techniques.
The goal of the Structural Circuits Core (SCC) is to help researchers best utilize ultramodern technology for the
anatomical mapping of brain circuitry involved in drug addiction. In order to do so, the SCC partners with the
University Imaging Center (UIC), the University of Minnesota Informatics Institute (UMII), the Minnesota
Supercomputing Institute (SCI) and the Data Repository for the University of Minnesota (DRUM). The SCC
provides the infrastructure for automated use of brain clearing technology paired with meso- and micro-scale
imaging of the central nervous system. Importantly, the SCC helps tailor experiments to best utilize the most
appropriate methodological and technological approaches, and, integrating with the Addiction Connectome
Core, provides standardized resources for the analysis, storage, and distribution of these imaging datasets. The
SCC not only allows investigators to quickly and thoroughly interrogate their own data, but also allows
quantitative comparisons across laboratories through a common format structure and custom designed software.
项目总结:结构电路核心
现代组织清除和成像方法提供了关于神经的丰富信息的可能性
系统解剖和功能。然而,为了更好地利用这些方法,了解组织的选择
清晰度,以及各种成像方法的优缺点需要了解。
此外,数据处理、分析和存储都会在尝试完全
利用这些现代技术的能力。
结构电路核心(SCC)的目标是帮助研究人员最好地利用超现代技术来
与药物成瘾有关的大脑回路的解剖图谱。为了做到这一点,SCC与
大学成像中心(UIC),明尼苏达大学信息学研究所(UMII),明尼苏达州
超级计算研究所(SCI)和明尼苏达大学数据存储库(DRUM)。SCC
为自动使用脑清理技术提供基础设施,并与中、微尺度配合使用
中枢神经系统的成像。重要的是,SCC帮助量身定做实验以最大限度地利用
适当的方法和技术方法,并与成瘾连接组相结合
核心,为这些成像数据集的分析、存储和分发提供标准化资源。这个
SCC不仅允许调查人员快速彻底地询问自己的数据,而且还允许
通过通用格式结构和定制设计的软件进行实验室间的定量比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul G Mermelstein其他文献
Paul G Mermelstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul G Mermelstein', 18)}}的其他基金
Enhancing Student Diversity in Drug Addiction Research
提高毒瘾研究中的学生多样性
- 批准号:
9295001 - 财政年份:2015
- 资助金额:
$ 30.28万 - 项目类别:
Enhancing Student Diversity in Drug Addiction Research
提高毒瘾研究中的学生多样性
- 批准号:
10657331 - 财政年份:2015
- 资助金额:
$ 30.28万 - 项目类别:
Enhancing Student Diversity in Drug Addiction Research
提高毒瘾研究中的学生多样性
- 批准号:
10374273 - 财政年份:2015
- 资助金额:
$ 30.28万 - 项目类别:
Enhancing Student Diversity in Drug Addiction Research
提高毒瘾研究中的学生多样性
- 批准号:
8829461 - 财政年份:2015
- 资助金额:
$ 30.28万 - 项目类别:
Enhancing Student Diversity in Drug Addiction Research
提高毒瘾研究中的学生多样性
- 批准号:
9088439 - 财政年份:2015
- 资助金额:
$ 30.28万 - 项目类别:
NFAT-mediated gene expression and striatal plasticity
NFAT 介导的基因表达和纹状体可塑性
- 批准号:
7417575 - 财政年份:2005
- 资助金额:
$ 30.28万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Research Grant