ARCHERY: Artificial Intelligence based Radiotherapy treatment planning for Cervical and Head and Neck cancer

ARCHERY:基于人工智能的宫颈癌和头颈癌放射治疗计划

基本信息

  • 批准号:
    10415314
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY 50% of cancer patients require radiotherapy during their disease course, however, only 10-40% of patients in low and middle-income countries (LMICs), have access to it. A shortfall in the specialised workforce to deliver radiotherapy has been identified as the most significant barrier to expanding radiotherapy capacity. The current radiotherapy workflow is inefficient requiring several labor intensive processes and takes weeks to months to deliver in LMICs. The growing demand for cancer treatment means that the ratio of incidence to mortality will continue to worsen without a scalable solution. Artificial intelligence (AI) based software has been developed to automate two components of the radiotherapy planning pathway 1. Delineation of anatomical areas that are at risk of tumour spread and at risk of radiation damage. 2. Definition of the position, size and shape of the radiation beams. Proposed advantages include improved treatment accuracy, as well as a reduction in the time (from weeks to less than a day) and human resources needed to deliver radiotherapy. We propose a non-randomised prospective study to evaluate the quality and economic impact of AI based automated radiotherapy treatment for cervical cancer and head and neck cancers, which are endemic in LMICs, and for which radiotherapy is the primary curative treatment modality. The sample size of 706 patients (353 for each cancer type) has been calculated based on an estimated 95% treatment plan acceptability rate. Time and cost savings will be analysed as secondary outcome measures to establish the cost and resource impact of automation using the time-driven activity-based costing model. The 48-month study will take place in six public sector cancer hospitals in India (n=2), Jordan (n=1), Malaysia (n=1), and South Africa (n=2) to ensure we include a broad range of patients and the representativeness of the findings will support implementation of the software in LMICs. If the study objectives are met, the AI based software will be offered as a not-for-profit web service to public sector state hospitals in LMICs to support expansion of high quality radiotherapy capacity, improving access, and affordability of this key modality of cancer cure and control.
项目摘要 50%的癌症患者在病程中需要放射治疗,然而,只有10-40%的患者 低收入和中等收入国家(LMIC)的专业劳动力短缺, 提供放射治疗被认为是扩大放射治疗能力的最大障碍。 目前的放射治疗工作流程效率低下,需要几个劳动密集型过程, 几周到几个月才能送到中低收入国家对癌症治疗需求的不断增长意味着, 如果没有可扩展的解决方案,死亡率将继续恶化。 已经开发了基于人工智能(AI)的软件,以自动化 放射治疗计划路径1.描述存在肿瘤扩散风险的解剖区域, 辐射损伤的风险。2.辐射束的位置、尺寸和形状的定义。提出 其优点包括提高了治疗的准确性,以及减少了时间(从数周到更少 超过一天)和提供放射治疗所需的人力资源。 我们提出了一项非随机前瞻性研究,以评估基于人工智能的质量和经济影响 宫颈癌和头颈癌的自动放射治疗,这是地方病, LMIC,放射治疗是其主要治愈性治疗方式。样本量706 患者(每种癌症类型353例)已根据估计的95%治疗计划计算 接受率。时间和成本节省将作为次要结局指标进行分析,以确定 使用时间驱动的基于作业的成本计算模型,分析自动化对成本和资源的影响。 这项为期48个月的研究将在印度(n=2)、约旦(n=1)、马来西亚(n=1)和马来西亚(n=1)的6家公立癌症医院进行。 (n=1)和南非(n=2),以确保我们纳入了广泛的患者和代表性 调查结果将支持该软件在中低收入国家的实施。 如果达到研究目标,基于AI的软件将作为非营利网络服务提供, * 中低收入国家的公立医院,以支持扩大高质量的放射治疗能力, 获得和负担得起这一关键的癌症治疗和控制方式。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajay Aggarwal其他文献

Ajay Aggarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了