Novel mechanisms of vasculogenesis
血管发生的新机制
基本信息
- 批准号:10418662
- 负责人:
- 金额:$ 51.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-05 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAtherosclerosisBiological ModelsBlood CirculationBlood VesselsCellsDataDefectDevelopmentDiabetes MellitusDyslipidemiasEmbryoEmbryonic DevelopmentEndothelial CellsEndotheliumFluoresceinGenesGeneticGenetic RecombinationGrowthHematopoieticHumanHypertensionImageImmunohistochemistryKnowledgeLeadMammalsMethodsMolecularMolecular AnalysisMusNatural regenerationOrganPhenotypePlayPopulationPronephric structureRecoveryReporterRoleSignal PathwaySiteSourceTestingTherapeuticTimeTissuesTransgenic OrganismsVascular DiseasesVascular Endothelial CellVascular Endothelial Growth FactorsVascular EndotheliumVascular regenerationVenousVenusVertebratesZebrafishangiogenesisbasedefined contributionin vivoinjury and repairintercalationjunctional adhesion moleculemonolayermutantnovelnovel therapeutic interventionprogenitorrepairedstem cellstherapeutically effectivetranscription factorvascular contributionsvascular endothelial dysfunctionvasculogenesis
项目摘要
Project Summary
Multiple vascular diseases including hypertension, diabetes, atherosclerosis, and others are associated
with the dysfunction of vascular endothelium. However, there are currently no effective methods to incorporate
new endothelial cells into damaged vessels in vivo which could contribute to vascular regeneration and repair.
New blood vessels form by two distinct mechanisms, vasculogenesis, which is differentiation of
vascular endothelial cells de novo, and angiogenesis, formation of new vessels by branching from the existing
vessels. It is currently thought that vasculogenesis is largely limited to the initial vascular network during
embryogenesis, while the majority of the later vessels form by angiogenesis from the existing vasculature.
While it is difficult to study vasculogenesis in the mammalian embryos, zebrafish has emerged as an
advantageous model system to study vascular development. Molecular mechanisms that control vascular
development are highly conserved between all vertebrates including zebrafish and humans.
Here we have discovered a novel population of putative vascular progenitors in the zebrafish embryos.
These cells show high expression of ETS transcription factor etv2, a known key regulator of vasculogenesis,
and are located adjacent to the pronephros (pronephros-associated cells, PACs). Our preliminary data indicate
that PACs are the major source of organ specific vasculature, and they contribute to the embryonic vasculature
by a novel mechanism of cell intercalation into functional blood vessels. Our data further suggest that PACs
are likely conserved in mammalian embryos. In addition, we have identified Junctional Adhesion Molecule
Jam2b as one of key regulators required for PAC formation. We hypothesize that PACs are a novel group of
multipotent vascular progenitors which provide important contribution for vascular growth.
The following specific aims are proposed: 1) Define contribution of PACs to different types of blood
vessels; 2) Identify functional role for PACs in vascular development; 3) Identify the role of Jam2b and other
upstream regulators in the formation of PACs and vascular development. Lineage tracing approaches will be
employed to determine contribution of PACs to different types of vessels in zebrafish embryos. PAC ablation
and etv2 conditional inhibition strategies will be used to test the functional role of PACs in zebrafish, and their
formation will also be investigated in murine embryos. The role of jam2b in PAC formation, its interaction with
Vegf signaling pathway, and functional roles of other PAC-enriched genes will be analyzed in zebrafish.
Data obtained in this proposal will answer the key questions regarding the identity and functional role of
PACs, and are likely to uncover a novel mechanism of vascular growth. The mechanisms of vasculogenesis
are highly conserved, and our preliminary data suggest that similar progenitors are also present in the
mammalian embryos. Understanding the mechanism of how PACs form and incorporate into existing
vasculature may lead to a new direction to repair damaged vessels for therapeutic purposes.
项目摘要
多种血管疾病,包括高血压,糖尿病,动脉粥样硬化等
血管内皮功能障碍。但是,目前没有有效的方法可以合并
新的内皮细胞在体内受损的血管受损,这可能有助于血管再生和修复。
通过两种不同的机制形成新血管,即血管生成,这是分化的
血管内皮细胞从头开始,血管生成,通过从现有的
船只。目前认为,血管生成在很大程度上仅限于初始血管网络
胚胎发生,而后来的大多数血管通过现有脉管系统的血管生成形成。
虽然很难研究哺乳动物胚胎中的血管生成,但斑马鱼已成为一种
研究血管发展的有利模型系统。控制血管的分子机制
在包括斑马鱼和人类在内的所有脊椎动物之间的发展是高度保守的。
在这里,我们发现了斑马鱼胚胎中新型推定的血管祖细胞。
这些细胞显示ETS转录因子ETV2的高表达,ETV2是血管生成的已知关键调节剂,
并且位于近脑(近肾上腺相关的细胞PAC)附近。我们的初步数据表示
PAC是器官特异性脉管系统的主要来源,它们有助于胚胎脉管系统
通过细胞插入功能血管的新型机制。我们的数据进一步表明PACS
在哺乳动物胚胎中可能是保守的。此外,我们已经确定了连接粘附分子
JAM2B是PAC形成所需的关键调节器之一。我们假设PAC是一个新颖的一组
多能血管祖细胞为血管生长提供重要贡献。
提出了以下特定目的:1)定义PAC对不同类型的血液的贡献
船只; 2)确定PAC在血管发育中的功能作用; 3)确定JAM2B和其他
PAC和血管发育形成的上游调节剂。谱系跟踪方法将是
用于确定PAC对斑马鱼胚胎中不同类型的血管的贡献。 PAC消融
ETV2有条件抑制策略将用于测试PAC在斑马鱼及其中的功能作用
形成也将在鼠类胚胎中进行研究。 JAM2B在PAC形成中的作用,与
VEGF信号通路和其他富含PAC的基因的功能作用将在斑马鱼中进行分析。
在本提案中获得的数据将回答有关身份和功能作用的关键问题
PACS,很可能会发现一种新型的血管生长机制。血管发生的机制
是高度保守的,我们的初步数据表明,相似的祖细胞也存在于
哺乳动物胚胎。了解PAC的形成并纳入现有的机制
脉管系统可能会导致新方向修复损坏的船只以进行治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saulius Sumanas其他文献
Saulius Sumanas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saulius Sumanas', 18)}}的其他基金
Role of SHE and ABL signaling in vascular tubulogenesis
SHE 和 ABL 信号在血管生成中的作用
- 批准号:
10587279 - 财政年份:2023
- 资助金额:
$ 51.53万 - 项目类别:
The role of Collagen COL22A1 in intracranial aneurysms and vascular stability
胶原蛋白 COL22A1 在颅内动脉瘤和血管稳定性中的作用
- 批准号:
9926909 - 财政年份:2017
- 资助金额:
$ 51.53万 - 项目类别:
The role of Collagen COL22A1 in intracranial aneurysms and vascular stability
胶原蛋白 COL22A1 在颅内动脉瘤和血管稳定性中的作用
- 批准号:
9381376 - 财政年份:2017
- 资助金额:
$ 51.53万 - 项目类别:
THE ROLE OF COLLAGEN COL22A1 IN INTRACRANIAL ANEURYSMS AND VASCULAR STABILITY
胶原蛋白 COL22A1 在颅内动脉瘤和血管稳定性中的作用
- 批准号:
10212566 - 财政年份:2017
- 资助金额:
$ 51.53万 - 项目类别:
Molecular Mechanisms of Arterial-Venous Differentiation in Zebrafish
斑马鱼动静脉分化的分子机制
- 批准号:
8083384 - 财政年份:2011
- 资助金额:
$ 51.53万 - 项目类别:
Molecular Mechanisms of Arterial-Venous Differentiation
动静脉分化的分子机制
- 批准号:
8645705 - 财政年份:2011
- 资助金额:
$ 51.53万 - 项目类别:
Molecular Mechanisms of Arterial-Venous Differentiation
动静脉分化的分子机制
- 批准号:
8449174 - 财政年份:2011
- 资助金额:
$ 51.53万 - 项目类别:
Molecular Mechanisms of Arterial-Venous Differentiation
动静脉分化的分子机制
- 批准号:
8247717 - 财政年份:2011
- 资助金额:
$ 51.53万 - 项目类别:
相似国自然基金
平滑肌细胞MIA3激活BDNF参与神经调控动脉粥样硬化的机制研究
- 批准号:82300513
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Galectin-3/β-catenin通过NLRP3炎症小体调控血管平滑肌细胞泛凋亡抑制动脉粥样硬化作用和机制研究
- 批准号:82370469
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
- 批准号:82372565
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
纳米氧化铁介导的磁热作用调节TRPV1信号通路抑制动脉粥样硬化的作用及其机制研究
- 批准号:82300568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanistic modeling of epigenetic modifier mutations in human pluripotent stem cell-derived immune cells
人类多能干细胞衍生的免疫细胞表观遗传修饰突变的机制模型
- 批准号:
10733331 - 财政年份:2022
- 资助金额:
$ 51.53万 - 项目类别:
Mechanistic modeling of epigenetic modifier mutations in human pluripotent stem cell-derived immune cells
人类多能干细胞衍生的免疫细胞表观遗传修饰突变的机制模型
- 批准号:
10437235 - 财政年份:2022
- 资助金额:
$ 51.53万 - 项目类别:
The role of Trem2-expressing macrophages in atherosclerosis
表达 Trem2 的巨噬细胞在动脉粥样硬化中的作用
- 批准号:
10464928 - 财政年份:2022
- 资助金额:
$ 51.53万 - 项目类别: