The Short Course on the Application of Machine Learning for Automated Quantification of Behavior
机器学习在行为自动量化中的应用短期课程
基本信息
- 批准号:10420570
- 负责人:
- 金额:$ 15.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAnimal BehaviorAnimalsAutomobile DrivingAwarenessBehaviorBehavioralBehavioral GeneticsBiologicalBiomedical ResearchCollaborationsComplexComputer AnalysisComputer Vision SystemsComputer softwareDataData AnalysesData ScienceData SetDatabasesDevelopmentDisadvantagedDiseaseEducationEducational process of instructingEducational workshopEnvironmentEthologyExperimental DesignsExplosionFacultyFellowshipFosteringFuture TeacherGenerationsGeneticGenetic ResearchGenomicsGoalsHealthHumanInstitutionKnowledgeLearningMachine LearningMeasurementMentorsMethodologyMethodsMinority-Serving InstitutionModelingNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchParticipantPerformancePersonsPositioning AttributePostdoctoral FellowPsychiatryPublic HealthReproducibilityResearchResearch PersonnelResolutionResourcesRunningScheduleScienceScientistStatistical MethodsStructureStudentsSupervisionTechnologyThe Jackson LaboratoryTimeTrainers TrainingTrainingUnderrepresented MinorityWorkbasecareercareer developmentcomputer sciencedata integrationdata modelingdata streamsdeep learningdesignexperienceexperimental studygender minoritygraduate studentimprovedinnovationinsightlearned behaviorlearning materialslecturesmachine learning methodneural networkneuroethologynext generationnovelprogramsrecruitrelating to nervous systemstatistical learningstatisticssymposiumtechnology developmenttemporal measurementtoolvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Elucidating the mechanism and function of neural encodings and circuit dynamics has been a major challenge
in neuroscience and behavioral analyses. However, quantitative behavior analysis has dramatically accelerated
and improved with the implementation and application of new machine learning methods, including new deep
learning-based methods to track animals at high temporal and spatial resolution. This technology has broad
current and potential application that will impact a breadth of fields that have direct relevance and impact on
studies of human health and disease, including the fields of neuroscience, behavior, genetics, psychiatry, and
biomedicine. However, several roadblocks limit the widespread adoption of these tools and analyses. First, many
tracking and behavior analysis packages require a high level of computational expertise and are thus limited in
application to expert labs. Second, with high-resolution data streams, quantitating behavior requires new
statistical tools and proper modeling of data. Since the application of machine learning to behavioral analyses is
an emerging and key methodology, we recognize an unmet need for investigators in a variety of relevant fields
to learn the fundamentals of its rigorous use. Thus, to train a new generation of interdisciplinary researchers at
the interface of neuroscience, machine learning, and behavior, we propose to establish an annual 4-day
workshop that brings together experts in quantitative behavior, computer vision, and experimental design
to provide a practical introduction to the field of quantitative neuroethology and behavior: we propose the
unique and timely interdisciplinary course The Short Course on the Application of Machine Learning for
Automated Quantification of Behavior at the Jackson Laboratory (JAX). This Short Course will provide attendees
(in-person and virtually) with; information on the state-of-the-art of machine learning based behavior quantitation,
the fundamentals of behavior quantitation, hands-on workshops and data analysis, a forum for student-teacher
interaction for networking, and training at the leading edge of computational ethology. Students will emerge from
the course with the ability to: 1) design a high quality, adequately powered behavior experiment; 2) select and
install a suitable platform for high-resolution analysis of animal behavior; 3) deploy a behavior data analysis
strategy, including collecting new training datasets, training analysis software, and validating performance on
held-out data; and 4) run workflows/pipelines that are necessary to analyze their data following extraction. To
achieve this, we propose: Aim 1. To develop and deliver a 4-day workshop to train scientists on application of
machine learning to animal behavior quantitation. Aim 2. To create an environment that will expand the field of
quantitative behavior analysis by fostering idea generation, discussion, and collaboration to yield new
discoveries, broader applications, and advance technology development. Aim 3. Foster the recruitment and
development of diverse junior investigators in neuroscience, behavioral genetics, and quantitative analysis of
animal behavior.
项目概要/摘要
阐明神经编码和电路动力学的机制和功能一直是一个重大挑战
在神经科学和行为分析方面。然而,定量行为分析已大大加速
并随着新的机器学习方法的实施和应用而得到改进,包括新的深度学习方法
基于学习的方法以高时间和空间分辨率跟踪动物。该技术具有广泛
当前和潜在的应用将影响与直接相关和影响的广泛领域
人类健康和疾病的研究,包括神经科学、行为、遗传学、精神病学和
生物医学。然而,一些障碍限制了这些工具和分析的广泛采用。首先,很多
跟踪和行为分析包需要高水平的计算专业知识,因此受到限制
向专家实验室申请。其次,对于高分辨率数据流,定量行为需要新的
统计工具和正确的数据建模。由于机器学习在行为分析中的应用
作为一种新兴的关键方法,我们认识到各个相关领域的研究人员的需求尚未得到满足
学习其严格使用的基础知识。因此,培养新一代跨学科研究人员
结合神经科学、机器学习和行为的接口,我们建议建立每年 4 天的
研讨会汇集了定量行为、计算机视觉和实验设计方面的专家
为定量神经行为学和行为领域提供实用的介绍:我们提出
独特且及时的跨学科课程《机器学习应用短期课程》
杰克逊实验室 (JAX) 的行为自动量化。该短期课程将为与会者提供
(面对面和虚拟地)与;有关基于机器学习的行为定量的最先进信息,
行为量化基础知识、实践研讨会和数据分析、师生论坛
网络交互,以及计算行为学前沿的培训。学生们将从中脱颖而出
该课程具有以下能力:1)设计高质量、动力充足的行为实验; 2) 选择和
安装合适的平台对动物行为进行高分辨率分析; 3)部署行为数据分析
策略,包括收集新的训练数据集、训练分析软件以及验证性能
保留的数据; 4) 运行提取后分析数据所需的工作流程/管道。到
为了实现这一目标,我们建议: 目标 1. 制定并举办为期 4 天的研讨会,培训科学家应用
机器学习到动物行为定量。目标 2. 创造一个扩大领域的环境
通过促进想法产生、讨论和协作来产生新的定量行为分析
发现、更广泛的应用和先进的技术发展。目标 3. 促进招聘和
神经科学、行为遗传学和定量分析领域多样化初级研究人员的发展
动物行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ishmail John Abdus-Saboor其他文献
Ishmail John Abdus-Saboor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ishmail John Abdus-Saboor', 18)}}的其他基金
Using Mouse Pain Scales to Discover Unusual Pain Sensitivity and New Pain Targets
使用小鼠疼痛量表发现异常的疼痛敏感性和新的疼痛目标
- 批准号:
10842053 - 财政年份:2023
- 资助金额:
$ 15.46万 - 项目类别:
Using mouse pain scales to discover unusual pain sensitivity and new pain targets
使用小鼠疼痛量表发现异常的疼痛敏感性和新的疼痛目标
- 批准号:
10581160 - 财政年份:2022
- 资助金额:
$ 15.46万 - 项目类别:
Determining the functions of molecularly defined populations of nociceptors in spinal and dental pain
确定分子定义的伤害感受器群体在脊柱和牙齿疼痛中的功能
- 批准号:
9980200 - 财政年份:2018
- 资助金额:
$ 15.46万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.46万 - 项目类别:
Continuing Grant














{{item.name}}会员




