The Short Course on the Application of Machine Learning for Automated Quantification of Behavior

机器学习在行为自动量化中的应用短期课程

基本信息

  • 批准号:
    10420570
  • 负责人:
  • 金额:
    $ 15.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Elucidating the mechanism and function of neural encodings and circuit dynamics has been a major challenge in neuroscience and behavioral analyses. However, quantitative behavior analysis has dramatically accelerated and improved with the implementation and application of new machine learning methods, including new deep learning-based methods to track animals at high temporal and spatial resolution. This technology has broad current and potential application that will impact a breadth of fields that have direct relevance and impact on studies of human health and disease, including the fields of neuroscience, behavior, genetics, psychiatry, and biomedicine. However, several roadblocks limit the widespread adoption of these tools and analyses. First, many tracking and behavior analysis packages require a high level of computational expertise and are thus limited in application to expert labs. Second, with high-resolution data streams, quantitating behavior requires new statistical tools and proper modeling of data. Since the application of machine learning to behavioral analyses is an emerging and key methodology, we recognize an unmet need for investigators in a variety of relevant fields to learn the fundamentals of its rigorous use. Thus, to train a new generation of interdisciplinary researchers at the interface of neuroscience, machine learning, and behavior, we propose to establish an annual 4-day workshop that brings together experts in quantitative behavior, computer vision, and experimental design to provide a practical introduction to the field of quantitative neuroethology and behavior: we propose the unique and timely interdisciplinary course The Short Course on the Application of Machine Learning for Automated Quantification of Behavior at the Jackson Laboratory (JAX). This Short Course will provide attendees (in-person and virtually) with; information on the state-of-the-art of machine learning based behavior quantitation, the fundamentals of behavior quantitation, hands-on workshops and data analysis, a forum for student-teacher interaction for networking, and training at the leading edge of computational ethology. Students will emerge from the course with the ability to: 1) design a high quality, adequately powered behavior experiment; 2) select and install a suitable platform for high-resolution analysis of animal behavior; 3) deploy a behavior data analysis strategy, including collecting new training datasets, training analysis software, and validating performance on held-out data; and 4) run workflows/pipelines that are necessary to analyze their data following extraction. To achieve this, we propose: Aim 1. To develop and deliver a 4-day workshop to train scientists on application of machine learning to animal behavior quantitation. Aim 2. To create an environment that will expand the field of quantitative behavior analysis by fostering idea generation, discussion, and collaboration to yield new discoveries, broader applications, and advance technology development. Aim 3. Foster the recruitment and development of diverse junior investigators in neuroscience, behavioral genetics, and quantitative analysis of animal behavior.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ishmail John Abdus-Saboor其他文献

Ishmail John Abdus-Saboor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ishmail John Abdus-Saboor', 18)}}的其他基金

Using Mouse Pain Scales to Discover Unusual Pain Sensitivity and New Pain Targets
使用小鼠疼痛量表发现异常的疼痛敏感性和新的疼痛目标
  • 批准号:
    10842053
  • 财政年份:
    2023
  • 资助金额:
    $ 15.46万
  • 项目类别:
Using mouse pain scales to discover unusual pain sensitivity and new pain targets
使用小鼠疼痛量表发现异常的疼痛敏感性和新的疼痛目标
  • 批准号:
    10581160
  • 财政年份:
    2022
  • 资助金额:
    $ 15.46万
  • 项目类别:
Determining the functions of molecularly defined populations of nociceptors in spinal and dental pain
确定分子定义的伤害感受器群体在脊柱和牙齿疼痛中的功能
  • 批准号:
    9980200
  • 财政年份:
    2018
  • 资助金额:
    $ 15.46万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了