Monitoring of disease-induced skin VOC patterns from handheld and wearable chemical sensors
通过手持式和可穿戴化学传感器监测疾病引起的皮肤 VOC 模式
基本信息
- 批准号:10426964
- 负责人:
- 金额:$ 98.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-22 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAerospace EngineeringArtificial IntelligenceAsthmaAttention deficit hyperactivity disorderAutomatic Data ProcessingBenchmarkingBiomedical TechnologyBlood PressureCaliforniaCatalogsChemicalsChildhoodChronic DiseaseChronic Obstructive Pulmonary DiseaseClinicalConnective Tissue DiseasesConsumptionCoupledDataData AnalysesDegenerative polyarthritisDetectionDevelopmentDevicesDiagnosisDiagnosticDiagnostic testsDifferential DiagnosisDiseaseEczemaEngineeringEnterovirus InfectionsEnvironmentExhalationFeverFingerprintFlareFragile X PremutationFundingGalvanic Skin ResponseGasesGoalsGoldHandHand functionsHealthHealthcareHeart RateHomeHumidityHypersensitivity skin testingIndividualJointsKnowledgeLeadLinkLungLung diseasesMachine LearningMass Spectrum AnalysisMeasurementMeasuresMechanicsMedicalMental HealthMethodsMonitorNational Institute of Biomedical Imaging and BioengineeringNational Institute of Environmental Health SciencesOutputOxygenPatientsPatternPediatric HospitalsPhasePhiladelphiaPsoriasisPsoriatic ArthritisPublishingPulmonary EmbolismPulmonary FibrosisPulmonary HypertensionPulse RatesRADx RadicalRapid diagnosticsReagentRegulatory PathwayRespirationRespiratory Signs and SymptomsRespiratory Syncytial Virus InfectionsRespiratory syncytial virusRheumatoid ArthritisSamplingSarcoidosisSchizophreniaSickle Cell AnemiaSiteSkinSkin TemperatureSpectrometryStandardizationSymptomsSystemSystemic diseaseTestingTimeTrainingUnited States National Institutes of HealthUrinary tract infectionUrineVulnerable PopulationsWeightWorkartificial intelligence algorithmasthmatic patientautism spectrum disorderbasebiomarker discoveryclinical research sitecohortcommercializationcostdata streamsdetectordiagnostic tooldisease diagnosisgraphical user interfacehealth care settingsimprovedinfluenza infectioninstrumentmHealthmachine learning algorithmmetabolomicsminimally invasivenovelnovel diagnosticspediatric patientspoint-of-care diagnosticsportabilityprogramsranpirnasereal time monitoringresearch clinical testingsensorskin disordertelehealthtoolvolatile organic compoundwearable sensor technology
项目摘要
Project Summary/Abstract: This project will bring two skin VOC sensors (hand-held, wearable) into clinical
use to improve rapid diagnostics for a range of health conditions. Skin VOC monitoring is a new concept with
potential to transform healthcare. Our hypothesis is that miniature skin VOC analysis devices can be coupled
with vital sign sensors to measure disease signatures in real-time faster than a traditional differential diagnosis.
The proposal has four goals: (1) adapt our current volatile organic compound (VOC) detector into a hand-held
format for gas phase skin-emitted metabolites, coupled to non-invasive vital sign sensors and artificial
intelligence machine learning (AI/ML) algorithms; (2) deploy our hand-held skin VOC system on 20 diseases
over 5 years; (3) adapt our current wearable vital monitoring system to include our skin VOC detector, and use
this to monitor persistent asthma patients for disease flares; (4) prepare for our project and devices to move
through commercial manufacturing, standardization and FDA regulatory approval. To meet these goals, we
plan the following: in Aim #1, we adapt our miniature VOC detection device for skin measurements, and couple
it with 7 commercial-off-the-shelf vital sign sensors (skin temperature, pulse rate, respiration rate, heart rate,
oxygen saturation, galvanic skin response, skin humidity). Our miniature differential mobility spectrometry
detector is coupled with a chip-based preconcentrator and miniature gas chromatograph column for chemical
separation and detection. Individual components have already been developed. Under direction of MPI Prof.
Davis, UC Davis Chair of Mechanical and Aerospace Engineering, a team of engineers will adapt these pieces
together into a hand-held unit for skin VOC sampling/analysis. Co-I Prof. Chuah will guide development of
AI/ML capability for automated data processing and interpretation from the integrated VOC and vital sign data
streams. In Aim #2, we will use this hand-held system at two different clinical sites to develop AI/ML signatures
for 20 different diseases compared to appropriately selected controls. The UC Davis site led by MPI Nicholas
Kenyon will focus on: 2 skin diseases (eczema, psoriasis), 7 lung diseases (asthma, chronic obstructive
pulmonary disease, pulmonary fibrosis, pulmonary hypertension, pulmonary embolism, sarcoidosis, sickle cell
disease with respiratory symptoms), 3 joint and connective tissue diseases (rheumatoid arthritis, psoriatic
arthritis, osteoarthritis), 4 mental health diseases (attention deficit hyperactivity disorder, autism, schizophrenia,
Fragile X premutation with mental health symptoms). The Children’s Hospital of Philadelphia site lead by Co-I
Audrey John will focus on: 4 pediatric fevers (urinary tract infection, enterovirus infection, respiratory syncytial
virus infection, influenza infection). In Aim #3, our team will combine our current wearable vital sign sensors
with our miniature VOC sensor, and identifying a novel profile for persistent asthma disease flares from both
data streams. Aim #4 will develop a manufacturing, commercialization, standardization and FDA regulatory
pathway for our devices/tests. These efforts are in conjunction UC Davis start-up company SensIT Ventures.
项目概要/摘要:本项目将把两种皮肤VOC传感器(手持式、可穿戴式)带入临床
用于改善对一系列健康状况的快速诊断。皮肤VOC监测是一个新概念,
改变医疗保健的潜力。我们的假设是,微型皮肤VOC分析设备可以耦合
与传统的鉴别诊断相比,生命体征传感器可以更快地实时测量疾病特征。
该提案有四个目标:(1)将我们目前的挥发性有机化合物(VOC)检测器改造成手持式
用于气相皮肤发射的代谢物的格式,其耦合到非侵入性生命体征传感器和人工
智能机器学习(AI/ML)算法;(2)将我们的手持式皮肤VOC系统部署在20种疾病上
(3)调整我们目前的可穿戴生命监测系统,包括我们的皮肤VOC检测器,并使用
这是为了监测持续性哮喘患者的疾病爆发;(4)为我们的项目和设备移动做准备
通过商业化生产、标准化和FDA监管批准。为了实现这些目标,我们
计划如下:在目标#1中,我们将我们的微型VOC检测设备用于皮肤测量,
它具有7个商业现成的生命体征传感器(皮肤温度,脉搏率,呼吸率,心率,
氧饱和度、皮肤电反应、皮肤湿度)。我们的微型微分迁移率光谱仪
检测器与基于芯片的预浓缩器和用于化学分析的微型气相色谱柱耦合。
分离和检测。各个组成部分已经开发。在MPI教授的指导下
戴维斯,加州大学戴维斯分校机械和航空航天工程系主任,一个工程师团队将改编这些作品
将两种不同的挥发性有机化合物组合成一个手持式装置,用于皮肤挥发性有机化合物采样/分析。蔡教授将指导
AI/ML功能,用于从集成VOC和生命体征数据中自动处理和解释数据
溪流在目标2中,我们将在两个不同的临床研究中心使用该手持式系统开发AI/ML签名
与适当选择的对照组相比,对20种不同疾病的治疗效果。由MPI Nicholas领导的UC Davis网站
凯尼恩将重点关注:2种皮肤病(湿疹、牛皮癣)、7种肺病(哮喘、慢性阻塞性肺病)
肺部疾病、肺纤维化、肺动脉高压、肺栓塞、结节病、镰状细胞
有呼吸道症状的疾病)、3种关节和结缔组织疾病(类风湿性关节炎、银屑病
关节炎,骨关节炎),4种精神健康疾病(注意力缺陷多动障碍,自闭症,精神分裂症,
脆性X前突变伴精神健康症状)。由Co-I领导的费城儿童医院
Audrey John将重点关注:4种儿科发热(尿路感染,肠道病毒感染,呼吸道合胞病毒感染)
病毒感染、流感感染)。在目标3中,我们的团队将联合收割机结合我们目前的可穿戴生命体征传感器,
与我们的微型VOC传感器,并确定一个新的配置文件,为持续性哮喘疾病发作,
数据流目标#4将开发一个制造,商业化,标准化和FDA监管
我们的设备/测试的路径。这些努力与加州大学戴维斯分校的初创公司SensIT Ventures合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRISTINA ELIZABETH DAVIS其他文献
CRISTINA ELIZABETH DAVIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRISTINA ELIZABETH DAVIS', 18)}}的其他基金
Monitoring of disease-induced skin VOC patterns from handheld and wearable chemical sensors
通过手持式和可穿戴化学传感器监测疾病引起的皮肤 VOC 模式
- 批准号:
10651755 - 财政年份:2022
- 资助金额:
$ 98.83万 - 项目类别:
A novel, hand-held, exhaled breath condensate sampler for the clinical research market; applications for asthma, pulmonary injury and inflammation.
一款面向临床研究市场的新型手持式呼出气体冷凝采样器;
- 批准号:
10323623 - 财政年份:2021
- 资助金额:
$ 98.83万 - 项目类别:
Portable GC detector for breath-based COVID diagnostics
用于基于呼吸的新冠肺炎诊断的便携式 GC 检测器
- 批准号:
10266337 - 财政年份:2020
- 资助金额:
$ 98.83万 - 项目类别:
Portable GC detector for breath-based COVID diagnostics
用于基于呼吸的新冠肺炎诊断的便携式 GC 检测器
- 批准号:
10321008 - 财政年份:2020
- 资助金额:
$ 98.83万 - 项目类别:
A wearable monitor for pediatric asthma: Developing environmental and breath sensors linked to spirometry
小儿哮喘可穿戴监测仪:开发与肺活量测定相关的环境和呼吸传感器
- 批准号:
9077049 - 财政年份:2015
- 资助金额:
$ 98.83万 - 项目类别:
相似海外基金
Equity-Focused, Evidence-Based Proactive Advising in Mechanical and Aerospace Engineering
机械和航空航天工程领域以公平为中心、循证的主动建议
- 批准号:
2314772 - 财政年份:2023
- 资助金额:
$ 98.83万 - 项目类别:
Standard Grant
NSF INCLUDES Network Connector: Expanded Network for Broader Participation in Aerospace Engineering through Education, Mentoring, and Workforce Development
NSF 包括网络连接器:通过教育、指导和劳动力发展扩大网络以更广泛地参与航空航天工程
- 批准号:
2304456 - 财政年份:2023
- 资助金额:
$ 98.83万 - 项目类别:
Continuing Grant
Collaborative Research: Research: Investigating Jonassen’s Design Theory of Problem Solving in Support of Pedagogical Change in Introductory Aerospace Engineering
合作研究:研究:调查乔纳森的问题解决设计理论以支持航空航天工程入门教学的变革
- 批准号:
2117224 - 财政年份:2021
- 资助金额:
$ 98.83万 - 项目类别:
Standard Grant
Collaborative Research: Research: Investigating Jonassen’s Design Theory of Problem Solving in Support of Pedagogical Change in Introductory Aerospace Engineering
合作研究:研究:调查乔纳森的问题解决设计理论以支持航空航天工程入门教学的变革
- 批准号:
2118077 - 财政年份:2021
- 资助金额:
$ 98.83万 - 项目类别:
Standard Grant
New Digitalisation Processes and Digital Twins for Aerospace Engineering.
航空航天工程的新数字化流程和数字孪生。
- 批准号:
2301901 - 财政年份:2019
- 资助金额:
$ 98.83万 - 项目类别:
Studentship
Mechanical and Aerospace Engineering Assistance for Transfer Improvement and Excellence
机械和航空航天工程援助,促进传输改进和卓越
- 批准号:
1742533 - 财政年份:2018
- 资助金额:
$ 98.83万 - 项目类别:
Standard Grant
Advanced Finite Element Techniques for Extreme Scale Multiphysics Problems in Aerospace Engineering
用于航空航天工程中极端规模多物理场问题的先进有限元技术
- 批准号:
2107049 - 财政年份:2018
- 资助金额:
$ 98.83万 - 项目类别:
Studentship
Research: Workplace Preparation in the Aerospace Engineering Profession
研究:航空航天工程行业的工作场所准备
- 批准号:
1826388 - 财政年份:2018
- 资助金额:
$ 98.83万 - 项目类别:
Standard Grant
New development of statistical control theory and its application to aerospace engineering
统计控制理论新进展及其在航空航天工程中的应用
- 批准号:
17K06492 - 财政年份:2017
- 资助金额:
$ 98.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)