Dissecting the role of cortico-basal ganglia circuit diversity in action learning from reinforcement
剖析皮质基底神经节回路多样性在强化行动学习中的作用
基本信息
- 批准号:10425617
- 负责人:
- 金额:$ 13.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsAreaAxonBasal GangliaBehaviorBehavior ControlBehavioralBrainBrain StemCalciumCellsCerebellumComplexCorpus striatum structureDopamineForelimbHeadHeterogeneityImageIndividualJoystickLearningLimb structureLinkMapsMeasuresMentorsMethodsModelingMotorMovementMusNeuronsOutcomePaperPathway interactionsPhasePhotonsPlayPopulationPositioning AttributePostdoctoral FellowProcessPsychological reinforcementPublishingPyramidal TractsRed nucleus structureResearchResearch TrainingRewardsRoleSpinal CordStrokeSynapsesTechniquesTennisTestingThalamic structurebasebehavior measurementcareer developmentcell typecentral nervous system injuryexperienceexperimental studylimb movementmotor controlmotor learningmotor recoveryneural networknoveloptogeneticsprogramsrabies viral tracingrelating to nervous systemskillsskills trainingtheoriestransmission processtwo-photon
项目摘要
Project Summary/Abstract
To learn novel actions through reinforcement, a fundamental mechanism of motor learning, the brain needs to
causally link previously performed movements to their resulting outcomes. But even single limb movements
consist of multiple aspects, which poses what is known as the credit assignment problem: ‘What was it that I just
did that led to the desired outcome?’ Through repeated reselection of the movement the brain converges on
which aspects are relevant, and variability is reduced in those aspects, refining the action into a skill.
Current theories suggest that this process is implemented in the cortico-basal ganglia-thalamo-cortical loop.
Cortical information about planned and ongoing movements is conveyed to the striatum via corticostriatal
projections. If the movement leads to a desired outcome, dopamine is released in striatum, strengthening the
activated corticostriatal synapses. This plasticity, in turn, is thought to allow the reselection of the movement
through the basal ganglia-thalamo-cortical loop. It is unclear however how different aspects of the action are
distinguished such that the relevant ones are refined. The anatomical heterogeneity of the corticostriatal
sensorimotor command may provide a circuit-level mechanism of this process. In the K99 mentored phase, I will
dissect this mechanism. I hypothesize that distinct corticostriatal projections convey different aspects of the
motor command and what is learned is determined by which projections are reinforced.
I have developed a head-fixed behavior task in which mice get rewarded for moving a joystick into a defined
circular target area. In this task, a specific movement direction, a position of the rewarded endpoint, or both may
be reinforced and learned by mice. I use behavioral measurements and manipulations, and neural decoding of
the different corticostriatal motor commands to probe what individual animals learn. I will be mentored by Dr. Rui
Costa, Dr. Daniel Wolpert, and collaborator Dr. James Murray to hone my behavior analysis skills and train in
cutting-edge methods for neural decoding, such as the use of neural networks. Then I use optogenetic
manipulation to directly test if anatomically distinct corticostriatal commands determine what animals learn.
Besides reselection of cortical motor commands through thalamus, the basal ganglia control movement by
disinhibiting brainstem motor centers, providing a parallel pathway for action refinement. One such center, the
red nucleus, is directly involved in forelimb control, as previously shown by me and others, and is also innervated
by the cerebellum. In the R00 phase, I will start my independent research by investigating if action refinement
also depends on basal ganglia control of brainstem motor centers, particularly the red nucleus. As I transition to
independence, Dr. Megan Carey will advise me in questions of cerebellum-related motor control. All mentors will
promote my career development. These research and training experiences will place me as a competitive
candidate to become a successful independent PI and give me the needed support to achieve milestones of
getting my first R01 and publishing the first independent paper from my lab.
项目概要/摘要
为了通过强化(运动学习的基本机制)来学习新动作,大脑需要
将先前执行的动作与其产生的结果联系起来。但即使是单肢动作
由多个方面组成,这就提出了所谓的学分分配问题:“我刚才是什么?”
这是否达到了预期的结果?”通过反复重新选择大脑集中的运动
哪些方面是相关的,并且减少了这些方面的可变性,从而将行动细化为技能。
目前的理论表明,这个过程是在皮质-基底节-丘脑-皮质环路中实现的。
有关计划和正在进行的运动的皮质信息通过皮质纹状体传递到纹状体
预测。如果运动达到了预期的结果,纹状体就会释放多巴胺,从而加强
激活皮质纹状体突触。反过来,这种可塑性被认为允许运动的重新选择
通过基底神经节-丘脑-皮质环。但目前尚不清楚该行动的不同方面有何不同
区分,从而细化相关内容。皮质纹状体的解剖异质性
感觉运动命令可以提供该过程的电路级机制。在K99辅导阶段,我会
剖析这个机制。我假设不同的皮质纹状体投射传达了不同的方面
运动指令和学到的东西取决于强化的预测。
我开发了一项头部固定行为任务,其中小鼠因将操纵杆移动到定义的位置而获得奖励
圆形目标区域。在此任务中,特定的移动方向、奖励端点的位置或两者都可以
被老鼠强化和学习。我使用行为测量和操作以及神经解码
不同的皮质纹状体运动命令来探究个体动物学习的内容。我将接受芮博士的指导
Costa、Daniel Wolpert 博士和合作者 James Murray 博士磨练了我的行为分析技能并进行了培训
神经解码的尖端方法,例如神经网络的使用。然后我用光遗传学
直接测试解剖学上不同的皮质纹状体命令是否决定动物学习的内容。
除了通过丘脑重新选择皮质运动命令外,基底神经节还通过
抑制脑干运动中心,为动作细化提供并行途径。一个这样的中心,
红核,直接参与前肢控制,如我和其他人之前所示,并且也受到神经支配
由小脑。在R00阶段,我将通过调查动作细化是否可以开始我的独立研究
还取决于基底神经节对脑干运动中枢,特别是红核的控制。当我过渡到
独立性,梅根·凯里博士将就小脑相关的运动控制问题向我提供建议。所有导师都会
促进我的职业发展。这些研究和培训经验将使我成为一名有竞争力的人
成为一名成功的独立 PI 的候选人,并为我提供实现里程碑所需的支持
获得我的第一个 R01 并发表我实验室的第一篇独立论文。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Mosberger其他文献
Alice Mosberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Mosberger', 18)}}的其他基金
Dissecting the role of cortico-basal ganglia circuit diversity in action learning from reinforcement
剖析皮质基底神经节回路多样性在强化行动学习中的作用
- 批准号:
10605243 - 财政年份:2022
- 资助金额:
$ 13.62万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 13.62万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 13.62万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 13.62万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 13.62万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 13.62万 - 项目类别:
Training Grant














{{item.name}}会员




