Deamidation-mediated metabolic reprogramming by KSHV in cell proliferation and tumorigenesis
KSHV 在细胞增殖和肿瘤发生中脱酰胺介导的代谢重编程
基本信息
- 批准号:10426391
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAnatomyAspartateBiologicalBiological MarkersBiological ProcessBiologyCancer PatientCancer cell lineCarbamyl PhosphateCell ProliferationCellsCellular Metabolic ProcessDataDihydroorotaseDiseaseDown-RegulationEnzymesEtiologyFamilyFoundationsGenesGlutamineGlycolysisGoalsGrantHerpesviridaeHerpesviridae InfectionsHumanHuman Herpesvirus 8ImmuneInnate Immune ResponseKaposi SarcomaLesionLigaseLinkLocationMalignant NeoplasmsMediatingMetabolicMetabolismModalityModificationMolecularMulticentric Angiofollicular Lymphoid HyperplasiaNucleic AcidsNucleotide BiosynthesisNucleotidesOncogenicOral cavityOral mucous membrane structurePalate Kaposi&aposs SarcomaPatientsPhasePost-Translational Protein ProcessingPrognosisProteinsPyrimidineRegulationResearchRoleSamplingSignal TransductionSimplexvirusSkinTestingTimeUrsidae FamilyViralViral Load resultVirus LatencyWorkaerobic glycolysisbasecancer therapycareercellular targetingchronic infectiondeamidationgammaherpesvirusimmune activationinsightlatent infectionnovelnucleotide metabolismpathogenpatient stratificationpreventprimary effusion lymphomaprotein functiontargeted cancer therapytranscarbamylasetranscription factortranslational applicationstumortumorigenesis
项目摘要
PROJECT SUMMARY
Human Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiological agent of multiple cancers. However,
the molecular details concerning the tumorigenesis of KSHV are not well understood. Our recent studies indicate
that herpesviruses employ protein deamidation to evade innate immune response. To probe the role of protein
deamidation in fundamental biological processes, we performed a focused screen targeting cellular glutamine
amidotransferases (GAT), a potential protein deamidases family. We identified one glutamine amidotransferase
as a negative regulator of NF-κB activation. In our preliminary studies, we found that the GAT possessed intrinsic
protein deamidating ability to deamidate NF-κB transcription factor to dampen its ability to transactivate NF-κB
genes. Remarkably, deamidation promoted aerobic glycolysis to promote cell proliferation and tumorigenesis.
Furthermore, KSHV hijacks the cellular mechanism to induce NF-κB deamidation and promote cell proliferation,
thereby inducing tumor formation. Our findings support the overarching hypothesis a nucleotide biosynthetic
enzyme deamidates a NF-κB subunit to reprogram metabolism, thus promoting cell proliferation and
tumorigenesis, and that KSHV hijacks this mechanism to achieve persistent infection. To test this central
hypothesis, I propose three aims in this project: 1) Elucidate the GAT-mediated deamidation of a NF-κB subunit
and downregulation of NF-κB activation; 2) Delineate the metabolic reprogramming by GAT-mediated
deamidation; and 3) Characterize a viral mechanism that hijacks the cellular deamidation to promote proliferation
and tumor formation during KSHV latent infection.
In the K99 phase, I will achieve the following three sub aims: 1) characterize the molecular detail of the NF-κB
deamidation (Aim 1A); 2) examine the role of deamidation in innate immune defense (Aim 1B); and 3) dissect
the mechanism of deamidation-mediated metabolic reprogramming (Aim 2A).
In the R00 phase, I will complete Aim 2 by defining the role of NF-κB deamidation in proliferation and
tumorigenesis of diverse cancer cell lines. Furthermore, I will investigate the mechanism by which KSHV
promotes NF-κB deamidation and define its role in metabolism and tumorigenesis during KSHV infection.
In summary, the K99/R00 project will characterize novel functions of a cellular metabolic enzyme (in nucleotide
synthesis) and a key transcription factor (a NF-κB subunit), and elucidate a new mechanism governing metabolic
reprogramming to drive cell proliferation, thereby offering fresh insight into the metabolic regulation during KSHV
infection. It will establish the foundation for my long-term career goals to study protein deamidations in cellular
metabolism, KSHV-associated tumorigenesis and translational applications to antiviral/antitumor therapies.
项目摘要
人类卡波西肉瘤相关疱疹病毒(KSHV)是多种癌症的病原体。然而,在这方面,
关于KSHV的肿瘤发生的分子细节还不清楚。我们最近的研究表明
疱疹病毒利用蛋白质脱酰胺来逃避先天免疫反应。为了探索蛋白质的作用
在基本生物过程中的脱酰胺作用,我们进行了针对细胞谷氨酰胺的聚焦筛选,
酰胺转移酶(GAT)是一个潜在的蛋白质脱酰胺酶家族。我们鉴定了一种谷氨酰胺转移酶
作为NF-κB活化的负调节剂。在我们的初步研究中,我们发现GAT具有内在的
使NF-κB转录因子脱酰胺以抑制其反式激活NF-κB的能力的蛋白质脱酰胺能力
基因.值得注意的是,脱酰胺促进有氧糖酵解,促进细胞增殖和肿瘤发生。
此外,KSHV劫持细胞机制以诱导NF-κB脱酰胺并促进细胞增殖,
从而诱导肿瘤形成。我们的发现支持了一个重要的假设,
酶使NF-κB亚基脱酰胺以重编程代谢,从而促进细胞增殖,
肿瘤发生,KSHV劫持这一机制,以实现持续感染。为了测试这个中央
基于这一假设,我提出了三个目标:1)阐明GAT介导的NF-κB亚基的脱酰胺作用
下调NF-κB的活化; 2)阐明GAT介导的代谢重编程
脱酰胺;和3)表征劫持细胞脱酰胺以促进增殖的病毒机制
KSHV潜伏感染时肿瘤的形成。
在K99阶段,我将实现以下三个子目标:1)对NF-κB的分子细节进行表征
脱酰胺(目的1A); 2)检查脱酰胺在先天免疫防御中的作用(目的1B); 3)解剖
脱酰胺介导的代谢重编程机制(Aim 2A)。
在R 00阶段,我将通过定义NF-κB脱酰胺在增殖中的作用来完成目标2,
不同癌细胞系的肿瘤发生。此外,我将研究KSHV的机制,
促进NF-κB脱酰胺并确定其在KSHV感染期间代谢和肿瘤发生中的作用。
总之,K99/R 00项目将表征细胞代谢酶的新功能(以核苷酸为单位)。
合成)和一个关键的转录因子(NF-κB亚基),并阐明了一个新的机制,管理代谢
重新编程以驱动细胞增殖,从而为KSHV期间的代谢调节提供新的见解
感染这将为我的长期职业目标奠定基础,研究细胞中的蛋白质脱酰胺
KSHV相关的肿瘤发生和抗病毒/抗肿瘤治疗的转化应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Zhao其他文献
Jun Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Zhao', 18)}}的其他基金
Deamidation-mediated metabolic reprogramming by KSHV in cell proliferation and tumorigenesis
KSHV 在细胞增殖和肿瘤发生中脱酰胺介导的代谢重编程
- 批准号:
10409889 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Deamidation-mediated metabolic reprogramming by KSHV in cell proliferation and tumorigenesis
KSHV 在细胞增殖和肿瘤发生中脱酰胺介导的代谢重编程
- 批准号:
10632091 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Deamidation-mediated metabolic reprogramming by KSHV in cell proliferation and tumorigenesis
KSHV 在细胞增殖和肿瘤发生中脱酰胺介导的代谢重编程
- 批准号:
9806837 - 财政年份:2019
- 资助金额:
$ 24.89万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Research Grant














{{item.name}}会员




