Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
基本信息
- 批准号:10429134
- 负责人:
- 金额:$ 66.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlgorithmsAttentionBehaviorBinge EatingBinge eating disorderBulimiaClinicalClinical TrialsCognitiveCognitive TherapyDataDisease remissionEatingEating DisordersEmotionalFoodFrequenciesFutureGoalsHealth TechnologyImpulsivityIndividualInformal Social ControlInterventionInterviewMachine LearningMethodsModalityMonitorNational Institute of Mental HealthOutcomeOutpatientsParticipantPathway interactionsPatientsPersonsRandomizedResearchResearch PrioritySymptomsSystemTestingTherapeuticTimeTreatment outcomeWorkacceptability and feasibilityadaptive interventionbasecognitive benefitscomparison interventioncostdata sharingdesigndigitaldigital healthdigital interventiondiscrete timeeating pathologyeffective therapyexperiencefeasibility testingfollow-upimprovedloss of control over eatingpatient subsetspilot trialskill acquisitionskillstool
项目摘要
Project Summary
Binge eating (i.e., eating a large amount of food within a discrete time period accompanied by a sense of loss
of control over eating) is a key symptom of several eating disorders including bulimia nervosa (BN) and binge
eating disorder (BED). While cognitive behavioral therapy (CBT) can be an effective treatment approach for
binge eating, 40-50% of patients with BED and nearly 70% of patients with BN fail to achieve remission. A
growing body of research suggests that a key reason many patients may fail to benefit from CBT is suboptimal
rates of skill acquisition (i.e., the ability to successfully perform a skill learned in treatment) and utilization (i.e.,
the frequency with which a patient practices or employs therapeutic skills). Poor skill use and acquisition may
be particularly high among certain subsets of patients such as those who experience deficits in self-regulation.
This research suggests that treatment augmentations that could improve skill use and acquisition (particularly
for those who need additional support to succeed in CBT) could have high potential to enhance outcomes.
The NIMH has recently identified that digital health technologies (DHTs) have high potential to “promote
between-session skill practice/acquisition” and have selected this as a high priority research initiative (NOT-
MH-18-031). DHTs may be able to improve skill use and acquisition via several pathways, one of which is the
use of micro-interventions (i.e., short digital interventions delivered to people as they go about their daily lives).
Micro-interventions can range in complexity from something as simple as an automated reminder to practice a
therapeutic skill to advanced just-in-time adaptive intervention (JITAI) systems that use machine learning or
other advanced algorithms to deliver personally tailored interventions in specific moments of need. Recent
pilot work from our team supports the utility of JITAIs as a way to improve skill utilization and acquisition when
used as a treatment augmentation but did not compare JITAIs to more simple automated reminder micro-
interventions. Additionally, our pilot work also found that frequent monitoring of skill use was in and of itself a
surprisingly effective method for encouraging skill practice. These results suggest that the added complexity of
JITAIs may not be necessary for all individuals to experience benefit from a DHT augmentation.
The ability to develop maximally effective DHTs requires the use of a larger clinical trial that can help to identify
which digital components (and at which complexity) are most effective at improving skill use and acquisition as
well clinical outcomes. We propose to use a 2 x 3 full factorial design in which 264 individuals with BN or BED
are assigned to one of six treatment conditions, i.e., representing each permutation of self-monitoring
complexity (Skills-Monitoring On vs. Skills-Monitoring Off) and micro-intervention complexity (No Micro-
Interventions vs. Automated Reminder Messages vs. JITAIs) as an augmentation to CBT. Results of the
component analysis set up future work to evaluate an optimized DHT containing only effective components
(which can be expected to have superior target engagement, efficacy, efficiency and disseminability).
项目概要
暴饮暴食(即在不连续的时间内吃掉大量食物,并伴有失落感
控制饮食)是多种饮食失调的关键症状,包括神经性贪食症(BN)和暴饮暴食
饮食失调(BED)。虽然认知行为疗法(CBT)可能是一种有效的治疗方法
暴饮暴食导致 40-50% 的 BED 患者和近 70% 的 BN 患者未能获得缓解。一个
越来越多的研究表明,许多患者无法从 CBT 中受益的一个关键原因是效果不佳
技能获取率(即成功执行治疗中学到的技能的能力)和利用率(即,
患者练习或运用治疗技能的频率)。技能使用和获取不当可能会
在某些患者亚群中尤其高,例如那些自我调节缺陷的患者。
这项研究表明,治疗增强可以改善技能的使用和获取(特别是
对于那些需要额外支持才能在 CBT 中取得成功的人来说)可能具有提高结果的巨大潜力。
NIMH 最近发现数字医疗技术 (DHT) 具有“促进
课间技能练习/习得”,并选择将此作为一项高度优先的研究计划(不是
MH-18-031)。 DHT 可能能够通过多种途径改善技能的使用和获取,其中之一是
使用微观干预(即在人们的日常生活中向他们提供简短的数字干预)。
微观干预的复杂程度各不相同,从简单的自动提醒到练习
使用机器学习或先进的即时适应性干预(JITAI)系统的治疗技能
其他先进的算法可在特定的需要时刻提供个性化的干预措施。最近的
我们团队的试点工作支持 JITAI 的实用性,作为提高技能利用率和获取的一种方式
用作治疗增强,但没有将 JITAI 与更简单的自动提醒微机进行比较
干预措施。此外,我们的试点工作还发现,频繁监控技能使用本身就是一个问题
鼓励技能练习的令人惊讶的有效方法。这些结果表明,增加的复杂性
JITAI 可能不是所有个人都需要从 DHT 增强中获益。
开发最有效的 DHT 的能力需要使用更大规模的临床试验来帮助确定
哪些数字组件(以及复杂程度)对于改善技能的使用和获取最有效
临床效果良好。我们建议使用 2 x 3 全因子设计,其中 264 名 BN 或 BED 个体
被分配到六种治疗条件之一,即代表自我监测的每种排列
复杂性(技能监控开启与技能监控关闭)和微干预复杂性(无微干预)
干预、自动提醒消息、JITAI)作为 CBT 的增强。结果
成分分析为未来评估仅包含有效成分的优化 DHT 奠定了基础
(预计将具有卓越的目标参与度、功效、效率和传播性)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADRIENNE SARAH JUARASCIO其他文献
ADRIENNE SARAH JUARASCIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADRIENNE SARAH JUARASCIO', 18)}}的其他基金
Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
- 批准号:
10597202 - 财政年份:2022
- 资助金额:
$ 66.41万 - 项目类别:
Reward Re-Training: A new treatment to address reward imbalance during the COVID-19 pandemic
奖励再培训:解决 COVID-19 大流行期间奖励失衡的新疗法
- 批准号:
10218350 - 财政年份:2020
- 资助金额:
$ 66.41万 - 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
- 批准号:
10612758 - 财政年份:2020
- 资助金额:
$ 66.41万 - 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
- 批准号:
10356884 - 财政年份:2020
- 资助金额:
$ 66.41万 - 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
- 批准号:
9908791 - 财政年份:2019
- 资助金额:
$ 66.41万 - 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
- 批准号:
10023279 - 财政年份:2019
- 资助金额:
$ 66.41万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
10207616 - 财政年份:2018
- 资助金额:
$ 66.41万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
10457919 - 财政年份:2018
- 资助金额:
$ 66.41万 - 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
- 批准号:
9755423 - 财政年份:2018
- 资助金额:
$ 66.41万 - 项目类别:
Addressing Weight History to Improve Behavioral Treatments for Bulimia Nervosa
解决体重史以改善神经性贪食症的行为治疗
- 批准号:
8891738 - 财政年份:2015
- 资助金额:
$ 66.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 66.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




