Optimizing digital health technologies to improve therapeutic skill use and acquisition

优化数字健康技术以改善治疗技能的使用和获取

基本信息

  • 批准号:
    10429134
  • 负责人:
  • 金额:
    $ 66.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary Binge eating (i.e., eating a large amount of food within a discrete time period accompanied by a sense of loss of control over eating) is a key symptom of several eating disorders including bulimia nervosa (BN) and binge eating disorder (BED). While cognitive behavioral therapy (CBT) can be an effective treatment approach for binge eating, 40-50% of patients with BED and nearly 70% of patients with BN fail to achieve remission. A growing body of research suggests that a key reason many patients may fail to benefit from CBT is suboptimal rates of skill acquisition (i.e., the ability to successfully perform a skill learned in treatment) and utilization (i.e., the frequency with which a patient practices or employs therapeutic skills). Poor skill use and acquisition may be particularly high among certain subsets of patients such as those who experience deficits in self-regulation. This research suggests that treatment augmentations that could improve skill use and acquisition (particularly for those who need additional support to succeed in CBT) could have high potential to enhance outcomes. The NIMH has recently identified that digital health technologies (DHTs) have high potential to “promote between-session skill practice/acquisition” and have selected this as a high priority research initiative (NOT- MH-18-031). DHTs may be able to improve skill use and acquisition via several pathways, one of which is the use of micro-interventions (i.e., short digital interventions delivered to people as they go about their daily lives). Micro-interventions can range in complexity from something as simple as an automated reminder to practice a therapeutic skill to advanced just-in-time adaptive intervention (JITAI) systems that use machine learning or other advanced algorithms to deliver personally tailored interventions in specific moments of need. Recent pilot work from our team supports the utility of JITAIs as a way to improve skill utilization and acquisition when used as a treatment augmentation but did not compare JITAIs to more simple automated reminder micro- interventions. Additionally, our pilot work also found that frequent monitoring of skill use was in and of itself a surprisingly effective method for encouraging skill practice. These results suggest that the added complexity of JITAIs may not be necessary for all individuals to experience benefit from a DHT augmentation. The ability to develop maximally effective DHTs requires the use of a larger clinical trial that can help to identify which digital components (and at which complexity) are most effective at improving skill use and acquisition as well clinical outcomes. We propose to use a 2 x 3 full factorial design in which 264 individuals with BN or BED are assigned to one of six treatment conditions, i.e., representing each permutation of self-monitoring complexity (Skills-Monitoring On vs. Skills-Monitoring Off) and micro-intervention complexity (No Micro- Interventions vs. Automated Reminder Messages vs. JITAIs) as an augmentation to CBT. Results of the component analysis set up future work to evaluate an optimized DHT containing only effective components (which can be expected to have superior target engagement, efficacy, efficiency and disseminability).
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADRIENNE SARAH JUARASCIO其他文献

ADRIENNE SARAH JUARASCIO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADRIENNE SARAH JUARASCIO', 18)}}的其他基金

Optimizing digital health technologies to improve therapeutic skill use and acquisition
优化数字健康技术以改善治疗技能的使用和获取
  • 批准号:
    10597202
  • 财政年份:
    2022
  • 资助金额:
    $ 66.41万
  • 项目类别:
Reward Re-Training: A new treatment to address reward imbalance during the COVID-19 pandemic
奖励再培训:解决 COVID-19 大流行期间奖励失衡的新疗法
  • 批准号:
    10218350
  • 财政年份:
    2020
  • 资助金额:
    $ 66.41万
  • 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
  • 批准号:
    10612758
  • 财政年份:
    2020
  • 资助金额:
    $ 66.41万
  • 项目类别:
Optimizing Mindfulness and Acceptance-Based Treatments for Bulimia Nervosa and Binge Eating Disorder using a Factorial Design
使用析因设计优化针对神经性贪食症和暴食症的正念和基于接受的治疗
  • 批准号:
    10356884
  • 财政年份:
    2020
  • 资助金额:
    $ 66.41万
  • 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
  • 批准号:
    9908791
  • 财政年份:
    2019
  • 资助金额:
    $ 66.41万
  • 项目类别:
Using Continuous Glucose Monitoring to Detect and Intervene on Maintenance Factors for Transdiagnostic Binge Eating Pathology
使用连续血糖监测来检测和干预跨诊断性暴食病理学的维持因素
  • 批准号:
    10023279
  • 财政年份:
    2019
  • 资助金额:
    $ 66.41万
  • 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
  • 批准号:
    10207616
  • 财政年份:
    2018
  • 资助金额:
    $ 66.41万
  • 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
  • 批准号:
    10457919
  • 财政年份:
    2018
  • 资助金额:
    $ 66.41万
  • 项目类别:
Improving Weight Loss Outcomes for Binge Eating Disorder
改善暴食症的减肥效果
  • 批准号:
    9755423
  • 财政年份:
    2018
  • 资助金额:
    $ 66.41万
  • 项目类别:
Addressing Weight History to Improve Behavioral Treatments for Bulimia Nervosa
解决体重史以改善神经性贪食症的行为治疗
  • 批准号:
    8891738
  • 财政年份:
    2015
  • 资助金额:
    $ 66.41万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 66.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了