Microbially guided discovery and biosynthesis of biologically active natural products
微生物引导的生物活性天然产物的发现和生物合成
基本信息
- 批准号:10428666
- 负责人:
- 金额:$ 37.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAnabolismAnalgesicsAnti-Inflammatory AgentsAntineoplastic AgentsAutoimmunityBiologicalBiological AvailabilityBiophysicsChemicalsComplexDevelopmentDiabetes MellitusDiseaseDrug TargetingEngineeringEnzymesEventEvolutionExhibitsGoalsHeart DiseasesHumanKineticsLaboratoriesLogicMalignant NeoplasmsMediatingMetabolismMethodsMolecularNatural ProductsObesityPharmacologic SubstancePharmacologyPreparationProcessPropertyProtein Tyrosine PhosphataseResearch DesignRoleSignal TransductionSourceStructureSystemTherapeuticTherapeutic AgentsTherapeutic EffectWorkcell behaviorcytotoxicdesignguided inquiryinhibitorinterestmicrobialmicrobial hostmicroorganismmolecular assembly/self assemblynovel strategiesoperationprogramsprotein foldingsignal processingsmall moleculesynthetic biologytargeted treatment
项目摘要
Project Summary
Our laboratory seeks to understand—and exploit—the biophysical relationships and logic structures that
allow biocatalytic networks to control complex cellular behaviors. We are broadly interested in (i) the kinetic
and structural features of enzymes that allow them to work together to coordinate nonlinear processes (e.g.,
metabolism, signal processing, and biological display), (ii) the role of natural constraints on biomolecular
diversity (e.g., a limited number of protein folds) in restricting the structures of biocatalytic networks and the
evolutionary trajectories of metabolites, and (iii) the logic structures that allow multi-enzyme systems to control
non-Boolean operations. These interests underlie a programmatic focus on the biosynthesis of targeted,
biologically active molecules. Natural products are a longstanding source of pharmaceuticals and medicinal
preparations. These molecules—perhaps, as a result of their biological origin—tend to exhibit favorable
pharmacological properties (e.g., bioavailability and “metabolite-likeness”) and can exert a striking variety of
therapeutic effects (e.g., analgesic, antiviral, antineoplastic, anti-inflammatory, cytotoxic, immunosuppressive,
and immunostimulatory). Recent advances in synthetic biology have supplied new approaches for the efficient
biosynthesis and functionalization of known, pharmaceutically relevant natural products; complementary
methods for the discovery and optimization new products with specific therapeutically relevant activities,
however, remain poorly developed. This program develops an experimental framework for using a therapeutic
objective (e.g., the inhibition of a human drug target) as a genetically encoded constraint to guide molecular
biosynthesis in microbial hosts. It departs from contemporary efforts to use microorganisms for the synthesis of
known, pharmaceutically relevant natural products by using them, instead, to build new biologically active
molecules. In an abstract sense, it describes a kind of biological computation (i.e., the microbial assembly of
molecular solutions to genetically encoded design challenges). Over the next five years, we will develop
selective inhibitors and activators of protein tyrosine phosphatases (PTPs). These enzymes contribute to an
enormous number of disease (e.g., diabetes, obesity, cancer, Alzheimer's disease, autoimmunity, and heart
disease) but lack targeted therapeutics of any kind. The resulting molecules will supply an important source of
both (i) chemical probes for studying PTP-mediated signaling events and (ii) starting points for the
development of PTP-targeted therapeutics. This work builds toward our long-term goal of using engineered
microorganisms to guide the discovery, biosynthesis, and evolution of new small-molecule pharmaceuticals.
项目摘要
我们的实验室寻求理解和利用生物物理关系和逻辑结构,
允许生物催化网络控制复杂的细胞行为。我们广泛关注(i)动力学
以及允许它们一起工作以协调非线性过程的酶的结构特征(例如,
代谢,信号处理和生物显示),(ii)生物分子的自然约束的作用
多样性(例如,有限数量的蛋白质折叠)限制生物催化网络的结构,
代谢物的进化轨迹,以及(iii)允许多酶系统控制的逻辑结构
非布尔运算这些兴趣是对靶向,
生物活性分子。天然产品是药物和药用的长期来源
准备工作。这些分子--也许是由于它们的生物学来源--往往表现出有利的
药理学性质(例如,生物利用度和“代谢物相似性”),并可以发挥惊人的各种
治疗效果(例如,镇痛、抗病毒、抗肿瘤、抗炎、细胞毒性、免疫抑制,
和免疫刺激)。合成生物学的最新进展为高效合成提供了新的途径。
已知的、药学相关的天然产物的生物合成和功能化;
用于发现和优化具有特定治疗相关活性的新产品的方法,
但仍然发展得很差。该计划开发了一个实验框架,
目标(例如,人药物靶抑制)作为遗传编码的约束来引导分子
微生物宿主的生物合成。它背离了当代利用微生物合成
已知的、药学上相关的天然产物,而不是使用它们来构建新的生物活性物质。
分子。在抽象意义上,它描述了一种生物计算(即,微生物组装
基因编码设计挑战的分子解决方案)。未来五年,我们将发展
蛋白酪氨酸磷酸酶(PTP)的选择性抑制剂和激活剂。这些酶有助于
大量的疾病(例如,糖尿病、肥胖症、癌症、阿尔茨海默病、自身免疫和心脏病
疾病),但缺乏任何种类的靶向治疗。由此产生的分子将提供一个重要的来源,
(i)用于研究PTP介导的信号传导事件的化学探针和(ii)用于研究PTP介导的信号传导事件的起始点。
PTP靶向治疗的发展。这项工作是为了实现我们的长期目标,
微生物来指导新的小分子药物的发现,生物合成和进化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerome Fox其他文献
Jerome Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerome Fox', 18)}}的其他基金
Microbially guided discovery and biosynthesis of biologically active natural products
微生物引导的生物活性天然产物的发现和生物合成
- 批准号:
10649545 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别:
Microbially guided discovery and biosynthesis of biologically active natural products
微生物引导的生物活性天然产物的发现和生物合成
- 批准号:
10277039 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别: