Optimizing Small Molecule Read-Through Compounds for Treating AtaxiaTelangiectasia
优化小分子通读化合物治疗共济失调毛细血管扩张症
基本信息
- 批准号:10434554
- 负责人:
- 金额:$ 50.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-19 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:APTX geneATM deficientATM functionATM geneAddressAffectAgeAnimal ModelAnimalsAtaxiaAtaxia TelangiectasiaAtaxia Telangiectasia PatientsBinding ProteinsBiological AssayBlood - brain barrier anatomyBrainCell LineCellsCellular AssayCessation of lifeCistronsClinicalDNA DamageDNA Repair GeneDataDevelopmentDiseaseDuchenne muscular dystrophyExonsFirefliesFundingGeneticHereditary DiseaseHumanImmunofluorescence ImmunologicImmunologic Deficiency SyndromesInheritedKnock-outLeadLengthLifeLuc GeneLuciferasesMeasuresMessenger RNAModelingMotorMusMutationNational Institute of Neurological Disorders and StrokeNeurodegenerative DisordersNeurologicNeurologic SymptomsNonsense MutationNuclear ProteinNucleotidesPainPatientsPenetrancePersonsPharmaceutical ChemistryPharmaceutical PreparationsPhasePhenotypePhosphorylationPhosphotransferasesPreparationProductionPropertyProteinsPublishingQuality of lifeRNAReactionReporterReportingResearchSafetySeriesSolubilityTerminator CodonTestingTherapeuticToxic effectTranslationsValidationWorkanalogassay developmentataxia telangiectasia mutated proteinataxia-telangiectasia like disorderblood-brain barrier permeabilizationcancer predispositionclinically relevantdesigneffective therapyefficacy studyefficacy testingexperimental studyhigh throughput screeningin vivoinnovationlymphoblastoid cell linemouse modelnervous system disordernovelnovel therapeuticspharmacokinetics and pharmacodynamicspreclinical studyprematurepreservationpreventprotein functionpulmonary arterial hypertensionrepositoryscreeningsmall moleculesmall molecule therapeuticssuccess
项目摘要
PROJECT SUMMARY
Ataxia-Telangiectasia (A-T) is a rare (~ 1 in every 100,000) but catastrophic and deadly disease that causes
progressive loss of motor function and death between the ages of 10 and 30 years. In about one-third of A-T
cases, the cause is a nonsense mutation in the ATM (Ataxia-Telangiectasia mutated) gene that encodes a
premature termination codon (PTC). No effective treatments are available. However, our group has been
developing and testing a series of compounds that effectively readthrough PTCs in the transcribed mRNA.
Published and unpublished studies demonstrate the capability of these “SMRT” compounds (for Small Molecule
ReadThrough) to readthrough PTCs and restore translation of functional ATM protein in in vivo and ex vivo
experiments. The rationale to further develop SMRT compounds is strengthened by promising therapeutic results
in mouse models for Duchenne muscular dystrophy and hereditary pulmonary arterial hypertension by our
collaborators. However, success in these models does not ensure success in a multisystem, neurological
disorder like A-T, in part because A-T uniquely requires the compound to cross the blood-brain barrier in
adequate amounts. We have made considerable progress in our preclinical studies. We present data indicating
that SMRT compounds elicit synthesis of full-length functional protein that penetrates the brain. We also recently
solved a major hurdle in the field of A-T research: lack of an animal model that faithfully reflects clinical disease.
In NINDS-supported studies, we used a double hit strategy to generate a mouse harboring both a clinically
relevant PTC in the ATM gene and a knockout of a related DNA repair gene called aprataxin (Aptx).
Characterization of this mouse model, including the profound, progressive ataxia that is a hallmark of A-T is
complete. Now, we move to next logical phase: to use a rationalized and comprehensive approach to optimize
our top candidate SMRT compound via medicinal chemistry. In AIM 1 we will develop and validate a novel
potency assay specifically designed to evaluate potency across the 10 most common A-T causing nonsense
mutations. In AIM 2 we will develop and validate an assay designed to confirm ATM function in human cells
taking advantage of our unique repository of A-T patient derived cell lines. Finally, in AIM 3, these assays (along
with those already standard in our labs to assess solubility, protein binding, blood brain barrier permeability, and
toxicity) will be utilized to conduct a medicinal chemistry optimization campaign to generate a small set of
candidate compounds with properties that maximize their chances of success in follow-on efficacy studies in our
new A-T mouse model. Our work represents the first real hope for kids suffering from A-T's devastating effects.
项目概要
共济失调-毛细血管扩张症 (A-T) 是一种罕见的疾病(大约每 100,000 人中就有 1 人),但却是灾难性的致命疾病,可导致
运动功能逐渐丧失并在 10 至 30 岁之间死亡。大约三分之一的 A-T
在某些情况下,原因是 ATM(共济失调毛细血管扩张突变)基因中的无义突变,该基因编码
提前终止密码子(PTC)。没有有效的治疗方法。然而我们组已经
开发和测试一系列能够有效读取转录 mRNA 中 PTC 的化合物。
已发表和未发表的研究证明了这些“SMRT”化合物(对于小分子
ReadThrough)可通读 PTC 并在体内和离体恢复功能性 ATM 蛋白的翻译
实验。有希望的治疗结果强化了进一步开发 SMRT 化合物的理由
我们的研究人员在杜氏肌营养不良症和遗传性肺动脉高压的小鼠模型中进行了研究
合作者。然而,这些模型的成功并不能确保多系统、神经系统的成功
像 A-T 这样的疾病,部分原因是 A-T 独特地需要该化合物穿过血脑屏障
足够的量。我们的临床前研究取得了相当大的进展。我们提供的数据表明
SMRT 化合物会引发穿透大脑的全长功能蛋白的合成。我们最近也
解决了A-T研究领域的一个主要障碍:缺乏忠实反映临床疾病的动物模型。
在 NINDS 支持的研究中,我们使用双重打击策略来产生具有临床
ATM 基因中的相关 PTC 以及称为 aprataxin (Aptx) 的相关 DNA 修复基因的敲除。
该小鼠模型的特征,包括作为 A-T 标志的深刻的渐进性共济失调
完全的。现在,我们进入下一个逻辑阶段:使用合理化和全面的方法来优化
我们通过药物化学获得的最佳候选 SMRT 化合物。在 AIM 1 中,我们将开发并验证一部小说
效力测定专门设计用于评估 10 种最常见的导致无意义的 A-T 的效力
突变。在 AIM 2 中,我们将开发并验证一种旨在确认人类细胞中 ATM 功能的检测方法
利用我们独特的 A-T 患者衍生细胞系存储库。最后,在 AIM 3 中,这些测定(以及
与我们实验室中已经标准的那些一起评估溶解度、蛋白质结合、血脑屏障渗透性和
毒性)将用于进行药物化学优化活动,以生成一小组
候选化合物的特性可最大程度地提高我们在后续功效研究中的成功机会
新的 A-T 鼠标模型。我们的工作为遭受 A-T 毁灭性影响的孩子们带来了第一个真正的希望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul James Mathews其他文献
Paul James Mathews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul James Mathews', 18)}}的其他基金
Behavioral and brain network effects of dysfunction in the cognitive cerebellum
认知小脑功能障碍对行为和大脑网络的影响
- 批准号:
10373891 - 财政年份:2022
- 资助金额:
$ 50.87万 - 项目类别:
Behavioral and brain network effects of dysfunction in the cognitive cerebellum
认知小脑功能障碍对行为和大脑网络的影响
- 批准号:
10651608 - 财政年份:2022
- 资助金额:
$ 50.87万 - 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
- 批准号:
8520408 - 财政年份:2011
- 资助金额:
$ 50.87万 - 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
- 批准号:
8125240 - 财政年份:2011
- 资助金额:
$ 50.87万 - 项目类别:
An optogenetic approach to exploring climbing fiber connections in the cerebellum
探索小脑攀爬纤维连接的光遗传学方法
- 批准号:
8332962 - 财政年份:2011
- 资助金额:
$ 50.87万 - 项目类别:
相似海外基金
Modelling cerebellar pathology of Ataxia-Telangiectasia: Assessing ATM-deficient mice versus human iPS cells
共济失调毛细血管扩张症的小脑病理学建模:评估 ATM 缺陷小鼠与人类 iPS 细胞
- 批准号:
429443222 - 财政年份:
- 资助金额:
$ 50.87万 - 项目类别:
Research Grants














{{item.name}}会员




