Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
基本信息
- 批准号:10073285
- 负责人:
- 金额:$ 42.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Feasibility Studies
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
**The Opportunity:** Financial institutions need to continuously interpret complex data streams to extract information necessary for providing accurate credit risk evaluation, managing market-making services, and predicting emissions in the context of green finance. Current classical machine learning (ML) techniques used to assist and provide insights to these services have limitations as these data streams evolve in complexity. There are three key challenges that financial institutions are seeking to address in an effort to improve their offerings: (1) Providing clients accurate credit-risk evaluation services, (2) Offering competitive rates for market-making services, and (3) Predicting emissions for informed sustainable finance decisions in line with ESG targets. Improving upon the current classical ML approaches could result in reduced risk, better market rates and targeted sustainable investments for financial institutions and their customers.**The Approach:** Recent quantum computing advances have the potential to offer significant improvements to the computations financial institutions rely on to improve upon efficiency, to reduce risk, to provide better service to customers and to develop personalised products. The team's offering using cutting-edge quantum machine learning techniques, running on an optimised full-stack Rigetti platform, will offer financial institutions a vertically integrated solution, allowing them to use the full capability of NISQ-era quantum computing. We will develop quantum signature kernels and leverage the results to enhance Rigetti's recent breakthroughs in quantum kernels. We will benchmark the results against classical ML methods for streamed data. Additionally, we will build and study quantum algorithms for computing efficient signatures and their inner products for long and high-dimensional data streams. **Innovation and Benefits:** A successful project outcome will have significant benefits for the UK financial sector and the quantum computing industry, including the participating organisations. Accelerating the development of quantum machine learning for financial data streams will enable Standard Chartered to be an industry leader in a future quantum-ready economy and continue to provide the best possible services to its clients. Developing quantum-enabled solutions will also bolster the UK finance sector. Rigetti will be able to accelerate its work to achieve narrow quantum advantage, the point at which a quantum computer outperforms the best classical resources. The project will also benefit Imperial College London by providing a framework for and use cases to test new quantum machine learning tools. Making these tools open access will further allow UK academics to test state-of-the-art quantum algorithms for their own applications (possibly beyond those in this proposal).
** 机遇:** 金融机构需要持续解读复杂的数据流,以提取必要的信息,从而在绿色金融背景下提供准确的信用风险评估、管理做市服务以及预测排放。当前用于帮助和提供这些服务的经典机器学习(ML)技术具有局限性,因为这些数据流在复杂性方面不断发展。金融机构在努力改善其服务时,正在寻求解决三个关键挑战:(1)为客户提供准确的信用风险评估服务,(2)为做市服务提供有竞争力的费率,以及(3)预测排放量,以便根据ESG目标做出明智的可持续财务决策。改进当前的经典ML方法可以降低风险,提高市场利率,并为金融机构及其客户提供有针对性的可持续投资。最近的量子计算进展有可能为金融机构所依赖的计算提供重大改进,以提高效率,降低风险,为客户提供更好的服务并开发个性化产品。该团队使用尖端的量子机器学习技术,在优化的全栈Rigetti平台上运行,将为金融机构提供垂直集成的解决方案,使他们能够使用NISQ时代量子计算的全部功能。我们将开发量子签名内核,并利用这些结果来增强Rigetti最近在量子内核方面的突破。我们将针对流数据的经典ML方法对结果进行基准测试。此外,我们将构建和研究量子算法,用于计算长和高维数据流的有效签名及其内积。** 创新和效益:** 成功的项目成果将为英国金融部门和量子计算行业带来重大利益,包括参与组织。加快金融数据流量子机器学习的发展,将使渣打银行成为未来量子经济的行业领导者,并继续为客户提供最佳服务。开发量子解决方案也将支持英国金融业。Rigetti将能够加速其工作,以实现窄量子优势,即量子计算机优于最佳经典资源的点。该项目还将为伦敦帝国理工学院提供测试新量子机器学习工具的框架和用例。开放这些工具将进一步允许英国学者为自己的应用测试最先进的量子算法(可能超出本提案的范围)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 42.85万 - 项目类别:
Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
- 批准号:
10083188 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Small Business Research Initiative
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
- 批准号:
2886134 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
- 批准号:
2882984 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
- 批准号:
2886876 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Studentship
Security-first Federated Quantum Machine Learning for Genomics
安全第一的基因组学联合量子机器学习
- 批准号:
10072286 - 财政年份:2023
- 资助金额:
$ 42.85万 - 项目类别:
Feasibility Studies