Computer-Aided Drug Design Targeting Protein Phosphorylation

针对蛋白质磷酸化的计算机辅助药物设计

基本信息

  • 批准号:
    10436417
  • 负责人:
  • 金额:
    $ 46.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

As part of the long-term goal to develop and apply computational methods to aid the design of drugs targeting protein kinases and related proteins, this research focuses on the development and application of the ensemble docking method, and on the study of drug-binding kinetics. Protein kinases continue to be the main targets for drug discovery in this research. The approval of about 60 inhibitors of protein kinases as drugs, mainly for treating cancer, has demonstrated protein kinases as important drug targets. As over 500 protein kinases are present in human and many mutants are driving diseases, many more drugs can be developed by targeting protein kinases. Specific Aim 1 continues to develop and apply the ensemble docking method to drug discovery. Aim 1a tests the hypothesis that scores, or their derivatives, from ensemble docking could predict whether lung cancer patients carrying disease-driving mutants of protein kinases are responsive to approved drugs. Aim 1b continues to validate the use of machine learning to improving ensemble docking. The validation will include all the proteins in the Directory of Useful Decoys-Enhanced developed for evaluating the performance of docking methods. Ensemble docking/machine learning models for these proteins will be made available to other scientists through the web server EDock-ML. Scientists can submit a compound to EDock-ML and receive the probability that the compound to be active. Aim 1c identifies new drug leads for the protein kinase c-MET with the aid of EDock-ML. Specific Aim 2 continues to test a combination of simulation methods for rapidly identifying compounds with therapeutically useful drug-binding kinetics, using more experimental data that are becoming available. It uses steered molecular dynamics (SMD) simulation for fast initial screening of chemical libraries, followed by evaluating the most promising subset by expensive but more rigorous methods, including the umbrella sampling technique, the Markov State Model, and the milestoning method. As it is still challenging to calculate absolute dissociation/association rate from molecular simulations, using several methods employing different approximations will help to draw robust and unbiased conclusions. After validation, the trajectories from the simulation will be used to decipher the molecular mechanisms of drug dissociation from protein kinases, including the examination of the generality of a two-step dissociation mechanism that has already been identified. Understanding the molecular mechanisms can give hint on the design of drugs with therapeutically useful drug-binding kinetics. The projects are designed to be performed by undergraduates. Senior scientists will work alongside the students often so that projects with higher impact can be included.
作为长期目标的一部分,开发和应用计算方法来辅助药物靶向的设计 蛋白激酶及其相关蛋白的研究主要集中在蛋白激酶的开发和应用 系综对接方法,以及药物结合动力学的研究。 在这项研究中,蛋白激酶仍然是药物发现的主要靶点。大约60个人的批准 作为药物的蛋白激酶抑制剂,主要用于治疗癌症,已证明蛋白激酶是 重要的药物目标。由于人类体内存在500多种蛋白激酶,许多突变体正在推动 对于疾病,可以通过靶向蛋白激酶来开发更多的药物。 具体目标1继续开发和应用系综对接方法进行药物发现。AIM 1a测试 假设来自整体对接的分数或其衍生品可以预测肺癌 携带致病蛋白激酶突变的患者对批准的药物有反应。目标1b 继续验证机器学习对改进集成对接的使用。验证将包括所有 用于评估对接性能的有用诱饵增强目录中的蛋白质 方法:研究方法。这些蛋白质的整体对接/机器学习模型将提供给其他 科学家通过网络服务器EDock-ML。科学家可以向EDock-ML提交化合物并收到 该化合物具有活性的概率。Aim 1c发现蛋白激酶c-Met的新药物先导 在EDock-ML的帮助下。 特定目标2继续测试快速识别化合物的模拟方法组合 治疗上有用的药物结合动力学,使用正在变得可用的更多实验数据。它使用 引导分子动力学(SMD)模拟用于化学库的快速初始筛选,随后 通过昂贵但更严格的方法评估最有希望的子集,包括雨伞 抽样技术、马尔可夫状态模型和里程碑方法。因为它仍然是计算具有挑战性的 来自分子模拟的绝对解离/缔合率,使用几种不同的方法 近似值将有助于得出可靠和公正的结论。经过验证,来自 模拟将被用来破译药物从蛋白激酶解离的分子机制, 包括检查两步解离机制的一般性,该机制已经被 确认身份。了解分子机制可以为药物的设计和治疗提供线索 有用的药物结合动力学。 这些项目是为本科生设计的。资深科学家将与 学生经常这样做,这样就可以将影响更大的项目包括在内。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics.
  • DOI:
    10.3390/life11020074
  • 发表时间:
    2021-01-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spiriti J;Wong CF
  • 通讯作者:
    Wong CF
Using machine learning to improve ensemble docking for drug discovery.
  • DOI:
    10.1002/prot.25899
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chandak T;Mayginnes JP;Mayes H;Wong CF
  • 通讯作者:
    Wong CF
Simulation of ligand dissociation kinetics from the protein kinase PYK2.
从蛋白激酶Pyk2中的配体解离动力学的模拟。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung F. Wong其他文献

模拟揭示了六肽GDYMNM和胰岛素受体蛋白激酶的催化结构域间的两条主要对接途径
Drug design for protein kinases and phosphatases: flexible-receptor docking, binding affinity and specificity, and drug-binding kinetics.
蛋白激酶和磷酸酶的药物设计:柔性受体对接、结合亲和力和特异性以及药物结合动力学。
Sensitivity analysis and principal component analysis in free energy calculations
自由能计算中的灵敏度分析和主成分分析
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung F. Wong;H. Rabitz
  • 通讯作者:
    H. Rabitz
Incorporating Receptor Flexibility into Structure-Based Drug Discovery
将受体灵活性纳入基于结构的药物发现
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung F. Wong
  • 通讯作者:
    Chung F. Wong
Efficient quantum mechanical calculation of solvation free energies based on density functional theory, numerical atomic orbitals and Poisson–Boltzmann equation
基于密度泛函理论、数值原子轨道和泊松的溶剂化自由能的高效量子力学计算
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Mingliang Wang;Jianhong Liu;Peixin Zhang;Chung F. Wong
  • 通讯作者:
    Chung F. Wong

Chung F. Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung F. Wong', 18)}}的其他基金

MODELING OF CONTRIBUTION OF PARTIAL CHARGES TO PROTEIN-LIGAND
部分电荷对蛋白质配体的贡献的建模
  • 批准号:
    7955244
  • 财政年份:
    2009
  • 资助金额:
    $ 46.95万
  • 项目类别:
CONTINUUM ELECTROSTATISTICS THEORY
连续静电理论
  • 批准号:
    7722350
  • 财政年份:
    2008
  • 资助金额:
    $ 46.95万
  • 项目类别:
CONTINUUM ELECTROSTATISTICS THEORY
连续静电理论
  • 批准号:
    7601697
  • 财政年份:
    2007
  • 资助金额:
    $ 46.95万
  • 项目类别:
Anti-plague agents targeting YopH of Yersinia Pestis
针对鼠疫耶尔森氏菌 YopH 的抗鼠疫药物
  • 批准号:
    7502069
  • 财政年份:
    2007
  • 资助金额:
    $ 46.95万
  • 项目类别:
Anti-plague agents targeting YopH of Yersinia Pestis
针对鼠疫耶尔森氏菌 YopH 的抗鼠疫药物
  • 批准号:
    7306010
  • 财政年份:
    2007
  • 资助金额:
    $ 46.95万
  • 项目类别:
CONTINUUM ELECTROSTATISTICS THEORY
连续静电理论
  • 批准号:
    7358713
  • 财政年份:
    2006
  • 资助金额:
    $ 46.95万
  • 项目类别:
Computer-aided Design of Anti-cancer Drugs Targeting Protein Kinases
计算机辅助设计靶向蛋白激酶的抗癌药物
  • 批准号:
    7117086
  • 财政年份:
    2006
  • 资助金额:
    $ 46.95万
  • 项目类别:
STRUCTURE FUNCTION RELATIONSHIPS BY SENSITIVITY ANALYSIS
敏感性分析的结构功能关系
  • 批准号:
    3306746
  • 财政年份:
    1992
  • 资助金额:
    $ 46.95万
  • 项目类别:
STRUCTURE FUNCTION RELATIONSHIPS BY SENSITIVITY ANALYSIS
敏感性分析的结构功能关系
  • 批准号:
    3306747
  • 财政年份:
    1992
  • 资助金额:
    $ 46.95万
  • 项目类别:
STRUCTURE FUNCTION RELATIONSHIPS BY SENSITIVITY ANALYSIS
敏感性分析的结构功能关系
  • 批准号:
    2184690
  • 财政年份:
    1992
  • 资助金额:
    $ 46.95万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 46.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了