Discovering protein degradation mechanisms that regulate the plant circadian clock
发现调节植物生物钟的蛋白质降解机制
基本信息
- 批准号:10439765
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-19 至 2023-08-14
- 项目状态:已结题
- 来源:
- 关键词:ArabidopsisArchitectureBiochemicalBiological ProcessClock proteinDiseaseEnvironmentFamilyFeedbackGeneticGenetic ScreeningGenetic TranscriptionGoalsGrowthHourHumanImageKnowledgeLaboratoriesMetabolismMolecularPeriodicityPhotosynthesisPlantsProteinsRegulationRoleSignal TransductionSurveysSystemTranslatingWorkcircadian pacemakerdesignexperimental studyprotein degradationreverse geneticsubiquitin-protein ligase
项目摘要
Project Summary/Abstract
The circadian clock is necessary to synchronize biological processes with the environment. A properly timed
clock relies on rapid creation and destruction of clock proteins. Despite this, few protein degradation
mechanisms have been discovered that regulate the circadian clock of plants. This is likely due to genetic
redundancy amongst the E3 ubiquitin ligases that control protein ubiquitylation. Arabidopsis has served as a
powerful system for discovering molecular components of the circadian clock using live imaging for forward
and reverse genetic screens. My laboratory has leveraged these advantages to perform two reverse genetic
screens of E3 ubiquitin ligase families, overcoming traditional problems with genetic redundancy and
identifying a host of new regulators of circadian clock function. This proposal describes the design and
execution of this screen and the early functional characterization of newly discovered clock regulators.
Functional characterization relies on our streamlined workflow that allows us to rapidly determine the E3
ubiquitin ligase substrate proteins, validate these potential substrates, and perform genetic and biochemical
experiments demonstrating their role in clock function. The proposal then describes our two main laboratory
goals moving forward: 1) completion of the proposed screens and 2) functional characterization of the newly
discovered clock regulators. These studies will determine how protein degradation mechanisms can help
clocks sense external signals, maintain a 24 hour rhythm, and connect to downstream rhythmic biological
processes.
The circadian clock regulates fundamental biological processes including photosynthesis, metabolism,
defense, and growth. Thus, the work that we perform will have far-reaching impacts because: 1) it will provide
the basic molecular building blocks that are necessary to generate a robust 24 hour clock in plants, 2) it will
serve as a framework for similar studies in non-plant systems, and 3) it will provide a more comprehensive
understanding of the post-translational mechanisms that overlay transcriptional feedback loops of clocks.
Successful completion of this proposal will reveal how post-translational degradation mechanisms can survey
cellular environments to control changes in transcriptional networks of circadian clocks and provide precise
timing to clock-controlled biological processes. In the longer term, this work will increase our understanding of
the regulation of critical biological processes in plants, but it will also translate to better understanding of clock
function and clock-related diseases in humans.
项目总结/摘要
生物钟是使生物过程与环境同步所必需的。一个适当的时间
生物钟依赖于生物钟蛋白的快速产生和破坏。尽管如此,
已经发现了调节植物生物钟的机制。这可能是由于遗传
控制蛋白质泛素化的E3泛素连接酶之间的冗余。拟南芥一直是
一个强大的系统,用于发现生物钟的分子组成部分,使用实时成像,
和反向基因筛选我的实验室利用这些优势,
筛选E3泛素连接酶家族,克服了遗传冗余的传统问题,
确定了一系列新的生物钟功能调节器。本提案描述了设计和
该屏幕的执行和新发现的时钟调节器的早期功能特性。
功能表征依赖于我们简化的工作流程,使我们能够快速确定E3
泛素连接酶底物蛋白,验证这些潜在的底物,并进行遗传和生物化学
实验证明它们在时钟功能中的作用。该提案然后描述了我们的两个主要实验室
今后的目标:1)完成拟议的筛选和2)新的
发现了时钟调节器。这些研究将确定蛋白质降解机制如何帮助
生物钟感知外部信号,保持24小时节律,并连接到下游节律性生物信号。
流程.
生物钟调节基本的生物过程,包括光合作用,新陈代谢,
防御和增长。因此,我们所做的工作将产生深远的影响,因为:1)它将提供
基本的分子构建模块,这是在植物中产生一个强大的24小时生物钟所必需的,2)它将
作为非植物系统中类似研究的框架,3)它将提供更全面的
理解翻译后机制,覆盖转录反馈循环的时钟。
成功完成这项提案将揭示如何翻译后降解机制可以调查
细胞环境来控制生物钟转录网络的变化,并提供精确的
生物钟控制的生物过程。从长远来看,这项工作将增加我们对
调节植物中的关键生物过程,但它也将转化为更好地理解时钟
与生物钟有关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Martin Gendron其他文献
Joshua Martin Gendron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Martin Gendron', 18)}}的其他基金
Discovering protein degradation mechanisms that regulate the plant circadian clock
发现调节植物生物钟的蛋白质降解机制
- 批准号:
10205100 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Protein degradation mechanisms that regulate daily and seasonal timing
调节日常和季节时间的蛋白质降解机制
- 批准号:
10623459 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Investigation of TOC1 function in the Arabidopsis Circadian Clock
拟南芥生物钟中 TOC1 功能的研究
- 批准号:
8102910 - 财政年份:2009
- 资助金额:
$ 41.88万 - 项目类别:
Investigation of TOC1 function in the Arabidopsis Circadian Clock
拟南芥生物钟中 TOC1 功能的研究
- 批准号:
7874535 - 财政年份:2009
- 资助金额:
$ 41.88万 - 项目类别:
Investigation of TOC1 function in the Arabidopsis Circadian Clock
拟南芥生物钟中 TOC1 功能的研究
- 批准号:
7752977 - 财政年份:2009
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship