Understanding Cell Division
了解细胞分裂
基本信息
- 批准号:10439611
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnaphaseAneuploidyAutomobile DrivingBiochemical PathwayBioinformaticsCell divisionChromatidsChromosome DeletionChromosome SegregationChromosome abnormalityChromosomesComplexCongenital AbnormalityDiseaseElementsFatigueInfertilityKinetochoresLaboratoriesMalignant NeoplasmsMetaphaseMetaphase PlateMitoticMolecularNormal CellOncogenesPathway interactionsProcessProtein phosphataseRegulatory PathwayReportingSourceTestingTumor Suppressor ProteinsVertebratesWorkanaphase-promoting complexcell transformationchromosome missegregationcohesionmulticatalytic endopeptidase complexprogramsprotein complexubiquitin-protein ligase
项目摘要
Abstract
Cell division requires a complex network of dozens of pathways whose interactions drive key transitions. One of
the most critical is the transition from metaphase to anaphase and mitotic exit. The Anaphase-Promoting
Complex/Cyclosome (APC/C), an E3 ubiquitin ligase, comprises the central target node of this critical decision
point. APC/C activity is sensitive to chromosome congression to the metaphase plate. At metaphase, the APC/C
ubiquitylates target mitotic regulators for destruction in the proteasome and induction of chromatid separation
and mitotic exit. While regulatory pathways for the APC/C have been identified, complete understanding of how
it is tuned to program the metaphase-anaphase transition after chromosome alignment remains unclear. Recent
work has implicated the Spindle and Kinetochore Associated (Ska) protein complex as a key element. The
studies proposed will clarify the molecular mechanisms by which Ska collaborates with and controls other mitotic
regulators, particularly protein phosphatases, governing the temporal and spatial activation of the APC/C to drive
the metaphase-anaphase transition. Metaphase, itself, is generally brief, but the Gorbsky laboratory discovered
that delays, even short ones, can cause partial or complete chromatid separation, a phenomenon termed
“cohesion fatigue.” Cohesion fatigue may be remarkably common as a source of both numerical aneuploidy and
large chromosome deletions, duplications and translocations, particularly in cells transformed by activated
oncogenes and the loss of tumor suppressors. The Gorbsky laboratory is taking a broad approach to study all
potential inputs that contribute to cohesion fatigue. The laboratory is also mapping the short term and long term
consequences of cohesion fatigue to determine how it promotes chromosome missegregation and damage.
Finally, complete understanding of cell division and its transitions can only occur if all components and regulators
of the process are identified. While the mitotic parts list is already large, continued reports of new components
indicate that it is not yet complete in vertebrates. Using bioinformatic guidance that has proven highly effective,
the Gorbsky lab is testing candidate mitotic regulators and characterizing their functions in cell division in normal
and transformed cells.
摘要
细胞分裂需要一个由数十条通路组成的复杂网络,这些通路的相互作用驱动着关键的转变。之一
最关键的是从中期到后期的过渡和有丝分裂的退出。后期促进
E3泛素连接酶复合体/细胞核小体(APC/C)是这一关键决定的中心靶点
点APC/C活性对染色体向中期板的聚集敏感。在中期,APC/C
泛素化酶靶向有丝分裂调节因子,破坏蛋白酶体并诱导染色单体分离
和有丝分裂退出。虽然已经确定了APC/C的调控途径,但完全了解如何调控APC/C的表达,
它被调整为在染色体比对仍然不清楚之后编程中期-后期转换。最近
工作表明纺锤体和动粒相关(Ska)蛋白复合物是一个关键元件。的
这项研究将阐明斯卡与其他有丝分裂细胞合作并控制它们的分子机制。
调节因子,特别是蛋白磷酸酶,控制APC/C的时间和空间激活,以驱动
中期到后期的过渡。中期本身通常是短暂的,但戈尔布斯基实验室发现,
延迟,即使是很短的延迟,也会导致部分或完全的染色单体分离,这种现象被称为
“凝聚力疲劳”内聚疲劳作为数量非整倍性和染色体畸变的来源可能是非常常见的。
大的染色体缺失、复制和易位,特别是在由活化的
癌基因和肿瘤抑制因子的丢失。Gorbsky实验室正在采取广泛的方法来研究所有
可能导致凝聚力疲劳的因素。该实验室还绘制了短期和长期
内聚疲劳的后果,以确定它如何促进染色体错误分离和损伤。
最后,只有当所有的成分和调节因子都被完全理解时,
的过程被识别。虽然有丝分裂的部件清单已经很大,但仍有新部件的报告
表明它在脊椎动物中还不完全。使用已被证明非常有效的生物信息学指导,
Gorbsky实验室正在测试候选的有丝分裂调节因子,并描述它们在正常细胞分裂中的功能。
和转化的细胞。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Live Fluorescence Imaging of Chromosome Segregation in Cultured Cells.
培养细胞中染色体分离的实时荧光成像。
- DOI:10.1007/978-1-0716-1904-9_5
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Daum,JohnR;DuBose,CaseyO;Sivakumar,Sushama;Gorbsky,GaryJ
- 通讯作者:Gorbsky,GaryJ
CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53.
CSAG1 维持 p53 缺陷细胞中有丝分裂中心体的完整性。
- DOI:10.1242/jcs.239723
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Sapkota,Hem;Wren,JonathanD;Gorbsky,GaryJ
- 通讯作者:Gorbsky,GaryJ
Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells.
- DOI:10.3390/genes13071157
- 发表时间:2022-06-27
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
Mps1 promotes poleward chromosome movements in meiotic prometaphase.
- DOI:10.1091/mbc.e20-08-0525-t
- 发表时间:2021-05-01
- 期刊:
- 影响因子:3.3
- 作者:Meyer RE;Tipton AR;LaVictoire R;Gorbsky GJ;Dawson DS
- 通讯作者:Dawson DS
Multiple determinants and consequences of cohesion fatigue in mammalian cells.
- DOI:10.1091/mbc.e18-05-0315
- 发表时间:2018-08-01
- 期刊:
- 影响因子:3.3
- 作者:Sapkota H;Wasiak E;Daum JR;Gorbsky GJ
- 通讯作者:Gorbsky GJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY J. GORBSKY其他文献
GARY J. GORBSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY J. GORBSKY', 18)}}的其他基金
The role of cohesion fatigue in chromosome instability
内聚疲劳在染色体不稳定中的作用
- 批准号:
8758530 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
The role of cohesion fatigue in chromosome instability
内聚疲劳在染色体不稳定中的作用
- 批准号:
9323451 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
The role of cohesion fatigue in chromosome instability
内聚疲劳在染色体不稳定中的作用
- 批准号:
8921235 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
The role of cohesion fatigue in chromosome instability
内聚疲劳在染色体不稳定中的作用
- 批准号:
9266556 - 财政年份:2014
- 资助金额:
$ 43.7万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 43.7万 - 项目类别: