A Data Science Framework for Empirically Evaluating and Deriving Reproducible and Transferrable RDoC Constructs in Youth
用于在青年中实证评估和推导可复制和可转移 RDoC 结构的数据科学框架
基本信息
- 批准号:10441499
- 负责人:
- 金额:$ 66.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:11 year oldAccountingAdolescentAgeAlgorithmic SoftwareAlgorithmsAttentionAttention Deficit DisorderBase of the BrainBehavioralBrainCharacteristicsChildChronologyClinicalClinical DataCommunitiesDataData ReportingData ScienceData SetDevelopmentDimensionsEnsureFunctional Magnetic Resonance ImagingGaussian modelGoalsHeterogeneityImageKnowledgeLearningLinkMeasurementMeasuresMental HealthMethodologyMethodsModalityModelingMultimodal ImagingObsessive-Compulsive DisorderParticipantPathway AnalysisPatient Self-ReportPhenotypePopulation HeterogeneityPrediction of Response to TherapyPsychopathologyReproducibilityReproducibility of ResultsResearch Domain CriteriaSamplingSourceStatistical MethodsStructureSubgroupSymptomsTimeVariantYouthage effectanalytical toolautoencoderbasebiological sexcognitive controlcognitive developmentdeep learningdesignfollow up assessmentfollow-uphigh dimensionalityindependent component analysisinsightlearning algorithmlearning strategymachine learning algorithmmultimodal neuroimagingmultimodalitynetwork modelsneuroimagingnovelpsychologicresponsesextooltransfer learningunsupervised learning
项目摘要
This project provides a data science framework and a toolbox of best practices for systematic
and reproducible data-driven methods for validating and deriving RDoC constructs with
relevance to psychopathology. Despite recent advances in methods for data-driven constructs,
results are often hard to reproduce using samples from other studies. There is a lack of
systematic statistical methods and analytical design for enhancing reproducibility. To fill this
gap, we will develop a data science framework, including novel scalable algorithms and
software, to derive and validate RDoC constructs. Although the proposed methods will
generally apply to all RDoC domains and constructs, we focus specifically on furthering
understanding of the RDoC domains of cognitive control (CC) and attention (ATT) constructs
implicated in attention deficit disorder (ADHD) and obsessive-compulsive disorder (OCD). Our
application will use multi-modal neuroimaging, behavioral, and clinical/self-report data from
large, nationally representative samples from the on Adolescent Brain Cognitive Development
(ABCD) study and multiple local clinical samples with ADHD and OCD. Specifically, using the
baseline ABCD samples, in aim 1, we will apply and develop methods to assess and validate the
current configuration of RDoC for CC and ATT using confirmatory latent variable modeling. We
will implement and develop new unsupervised learning methods to construct new
computational-driven, brain-based domains from multi-modal image data. In Aim 2, We will
introduce network analysis (via Gaussian graphical models) to characterize heterogeneity in the
interrelationship of RDoC measurements due to observed characteristics (i.e., age and sex). We
will further model the heterogeneity of the population due to unobserved characteristics by
introducing the data-driven precision phenotypes, which are the subgroup of participants with
similar RDoC dimensions. We propose a Hierarchical Bayesian Generative Model and scalable
algorithm for simultaneous dimension reduction and identify precision phenotypes. The model
also serves as a tool to transfer information from the community sample ABCD to local clinical
enriched studies. In aim 3, we will utilize the follow-up samples from ABCD and local clinical
enriched data sets to validate the results from Aims 1 and 2 and assess the clinical utility of the
precision phenotypes in predicting psychological development in follow-up time. Our project
will provide a suite of analytical tools to validate existing RDoC constructs and derive new,
reproducible constructs by accounting for various sources of heterogeneity.
该项目提供了一个数据科学框架和一个最佳实践工具箱
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEONJOO LEE其他文献
SEONJOO LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEONJOO LEE', 18)}}的其他基金
Statistical method for neural mechanism mediating and moderating cognitive system in Alzheimer's disease and aging research.
阿尔茨海默病和衰老研究中介导和调节认知系统的神经机制的统计方法。
- 批准号:
9885925 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
Statistical method for neural mechanism mediating and moderating cognitive system in Alzheimer's disease and aging research.
阿尔茨海默病和衰老研究中介导和调节认知系统的神经机制的统计方法。
- 批准号:
10083679 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
A Data Science Framework for Empirically Evaluating and Deriving Reproducible and Transferrable RDoC Constructs in Youth
用于在青年中实证评估和推导可复制和可转移 RDoC 结构的数据科学框架
- 批准号:
10645157 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
Statistical method for neural mechanism mediating and moderating cognitive system in Alzheimer's disease and aging research.
阿尔茨海默病和衰老研究中介导和调节认知系统的神经机制的统计方法。
- 批准号:
10320002 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
Statistical method for neural mechanism mediating and moderating cognitive system in Alzheimer's disease and aging research.
阿尔茨海默病和衰老研究中介导和调节认知系统的神经机制的统计方法。
- 批准号:
10541142 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
A Data Science Framework for Empirically Evaluating and Deriving Reproducible and Transferrable RDoC Constructs in Youth
用于在青年中实证评估和推导可复制和可转移 RDoC 结构的数据科学框架
- 批准号:
10250553 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
A Data Science Framework for Empirically Evaluating and Deriving Reproducible and Transferrable RDoC Constructs in Youth
用于在青年中实证评估和推导可复制和可转移 RDoC 结构的数据科学框架
- 批准号:
10058921 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
Statistical Methods for Neural Mechanisms Mediating Cognitive System in Mental Health Research
心理健康研究中调节认知系统的神经机制的统计方法
- 批准号:
9145621 - 财政年份:2015
- 资助金额:
$ 66.03万 - 项目类别:
Statistical Methods for Neural Mechanisms Mediating Cognitive System in Mental Health Research
心理健康研究中调节认知系统的神经机制的统计方法
- 批准号:
9278065 - 财政年份:2015
- 资助金额:
$ 66.03万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 66.03万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 66.03万 - 项目类别:














{{item.name}}会员




