Computational Tools for Protein Complex Structure Prediction from MS Data
根据 MS 数据预测蛋白质复杂结构的计算工具
基本信息
- 批准号:10441403
- 负责人:
- 金额:$ 11.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgreementAlgorithmsAppearanceBenchmarkingBindingBurialCommunitiesComplexComputational TechniqueComputing MethodologiesCryoelectron MicroscopyDataData AnalysesData SetDeuteriumDevelopmentDissociationDockingEntropyExposure toFluorescence Resonance Energy TransferGasesHigh Performance ComputingHybridsHydrogenKineticsLabelLeadLigand BindingLipidsMacromolecular ComplexesMass Spectrum AnalysisMeasurementMeasuresMembrane ProteinsMethodsModelingMolecular ConformationMonitorOhioPatternPhaseProceduresProtein Complex SubunitProtein RegionProteinsQuaternary Protein StructureRNAReactionResearchResolutionResourcesRotationShapesStructural ModelsStructureSurfaceTechniquesTestingWorkX-Ray Crystallographybasebiomacromoleculecomplex datacomputerized toolsexperienceexperimental studyflexibilityimprovedinterfacialion mobilitymacromoleculenovelprotein complexprotein structureprotein structure predictionrestraintstoichiometrystructural biologysupercomputertool
项目摘要
TR&D 5: Project Summary. The proposed Resource for Native Mass Spectrometry Guided Structural Biology
aims to develop advanced MS techniques for the structural characterization of biomacromolecules such as
protein:protein, membrane protein:lipid, and RNA:protein complexes. Experimental development in the resource
will focus on effective separations methods to purify and deliver native proteins to the MS, effective surface
induced dissociation methods for non-covalent interface cleavages and UVPD for covalent fragmentation of
native protein complexes, and measurement of the intact complexes and dissociation products (subcomplexes
and covalent fragments) with ion mobility MS (for conformations and conformational changes e.g., upon ligand
binding) and/or high resolution MS. Valuable structural information about macromolecular complexes will be
obtained. However, there is currently no automated way of generating structural restraints from the MS data,
and those restraints are generally insufficient to generate high accuracy complex structures from the data alone.
In TR&D 5, we are proposing that, in combination with novel computational methods, the restraints from SID and
IM, combined with restraints from established methods such as hydrogen deuterium exchange (HDX) and
covalent labeling (CL), are sufficient for improved macromolecular complex structure prediction. We will develop
tools to automatically extract restraints from experimental MS data and incorporate them into the Rosetta
structure prediction tools to guide protein complex structure prediction. The proposed research is structured into
two main stages.
Aim 1. We will develop computational tools for macromolecular complex structure prediction from solution
measurements that are monitored by MS (H/D exchange and covalent labeling). We will implement quantitative
covalent labeling and HDX exposure constraints into the Rosetta docking algorithm, such that it is driven by
agreement with the exposure pattern of the docked subunits. This aim use complexes as testbeds or will be
applied to predict structures from HDX and CL data for complexes from DBPs 1, 2, 3, 7 and 8
Aim 2. We will develop computational tools for macromolecular complex structure prediction from the surface-
induced dissociation and collision cross sections from ion mobility experiments. We will develop new Rosetta
docking scores that measure the agreement of complex models with the SID and IM CCS data. TR&D 5 is tightly
integrated with the other TR&Ds because it aims to extend the applicability of the developed experimental
methods by tailoring computational methods that allow structural modeling based on the experimental data. This
aim will use SID onset energies, oligomeric products generated, and CCS values to test the procedure and to
predict structures by using data from DBPs 1, 2, 3, 7 and 10.
研发成果5:项目总结。原生质谱引导结构生物学的建议资源
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steffen Lindert其他文献
Steffen Lindert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steffen Lindert', 18)}}的其他基金
Molecular models to characterize actions of calcium sensitizing drugs
表征钙增敏药物作用的分子模型
- 批准号:
10307610 - 财政年份:2018
- 资助金额:
$ 11.67万 - 项目类别:
Computational Tools for Protein Complex Structure Prediction from MS Data
根据 MS 数据预测蛋白质复杂结构的计算工具
- 批准号:
10192753 - 财政年份:2018
- 资助金额:
$ 11.67万 - 项目类别:
Molecular models to characterize actions of calcium sensitizing drugs
表征钙增敏药物作用的分子模型
- 批准号:
10063891 - 财政年份:2018
- 资助金额:
$ 11.67万 - 项目类别:
Rational Drug Design for Chronic Neuronal Damage
针对慢性神经元损伤的合理药物设计
- 批准号:
9550891 - 财政年份:2017
- 资助金额:
$ 11.67万 - 项目类别:
Computational Tools for Protein Complex Structure Prediction from MS Data
根据 MS 数据预测蛋白质复杂结构的计算工具
- 批准号:
9978851 - 财政年份:
- 资助金额:
$ 11.67万 - 项目类别:
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Research Grant
FER (H&L) AMR PACE (A-0438) grant funding agreement
费率(H
- 批准号:
107541 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Collaborative R&D














{{item.name}}会员




