Predicting Short- and Long-term Future Occurrence of Atrial Fibrillation from Single-Lead ECG in Normal Sinus Rhythm with an Explainable Deep Learning Model.
使用可解释的深度学习模型,根据正常窦性心律的单导联心电图预测未来短期和长期房颤的发生。
基本信息
- 批准号:10441204
- 负责人:
- 金额:$ 22.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnticoagulantsAtrial FibrillationClinicalClinical DataClinical TrialsCollaborationsDataData ScienceData SetDevicesDiagnosisDiagnosticEKG P WaveEarly DiagnosisEarly identificationElderlyElectrocardiogramEventFutureGoalsHealthHealth TechnologyHomeHourIndividualIschemic StrokeLeadLearningLeftMeasuresMethodsMonitorOutcomeParticipantPersonsPhotoplethysmographyPlayPopulationPreventive therapyProbabilityProspective StudiesResearch PersonnelRetrospective StudiesRiskRoleSeriesSignal TransductionSinusStrokeTechniquesTechnologyTimeValidationWorkbaseclinically relevantcohortcomorbiditycostdeep learningdeep learning modeldesigndiagnostic accuracydigital healthfollow-uphigh riskimprovedlearning strategymortalitynovelnovel strategiesprospectivescreeningsmart watchstroke risktooluptakewearable sensor technology
项目摘要
Project Summary/Abstract
More than 30 million individuals worldwide are diagnosed with atrial fibrillation (AF), however, another
13% of individuals with AF are left undiagnosed. People with AF have a five-fold increased risk of stroke
with up to one-third of all strokes shown to be related to AF. Timely administration of appropriate
preventative therapies, especially anticoagulants, can significantly decrease the complications of AF,
including strokes, by 65% and mortality by 30%.
Digital health technologies offer new approaches to identify individuals with undiagnosed AF, in particular
paroxysmal AF (PAF), characterized by occasional episodes of limited duration, for whom a 10-second
12-lead electrocardiography (ECG) performed in the clinical setting is unlikely to overlap with an AF event.
Continuous monitoring is promising, but still costly and burdensome for elderly individuals, who are at
higher risk.
To maximize the diagnostic yield of these technologies, we propose novel methods to predict the future
occurrence of AF from a single-lead ECG during normal sinus rhythm. Only recently it was shown that it
is possible to predict the future occurrence of AF from 12-lead ECGs in normal sinus rhythm collected in
a clinical setting. Here, we propose to predict the occurrence of AF with commercially available single-
lead ECG devices, which will enable a scalable alternative for early detection in a non-clinical setting.
To achieve this goal, we will analyze retrospectively the raw single-lead ECG data of 10,000+ individuals
with PAF over 14 days of monitoring. Validation work will then be carried out in a unique set of 1,718
asymptomatic individuals who participated in the prospective mSToPS clinical trial of AF screening (mean
age 73), with full clinical information and co-morbidities. The three aims of this project are:
1. Compute the probability of a future AF event in the short-term for an individual in normal sinus rhythm
using classic single-lead ECG features and representation learning based features.
2. Develop a method for long-term prediction of AF onset by evaluating individuals with AF detected in
1, 3, 6 and 12 months from the initial monitored period of normal sinus rhythm and by validating the
algorithms using the mSToPS dataset with 3 years of clinical follow-up and annotated co-morbidities.
3. Develop a technique to provide a preliminary interpretation of representation learning features for
time-series data applied to the short- and long-term prediction.
This retrospective study will develop and optimize new predictive techniques from single-lead ECGs,
available through consumer devices, with the goal of identifying individuals at high risk of developing AF.
A future direction to build on from this study's results would include a prospective study of AF prediction
using consumer single-lead ECG to improve clinical outcomes.
项目概要/摘要
全球有超过 3000 万人被诊断患有心房颤动 (AF),然而,另一个
13% 的 AF 患者未被诊断出来。患有房颤的人中风的风险增加五倍
多达三分之一的中风与房颤有关。及时给予适当的
预防性治疗,尤其是抗凝剂,可以显着减少房颤并发症,
包括中风,死亡率降低 65%,死亡率降低 30%。
数字健康技术提供了识别未确诊房颤患者的新方法,特别是
阵发性 AF (PAF),其特点是在有限的时间内偶尔发作,对于这些患者来说,需要 10 秒的时间
在临床环境中进行的 12 导联心电图 (ECG) 不太可能与 AF 事件重叠。
持续监测是有希望的,但对于老年人来说仍然成本高昂且负担重。
风险较高。
为了最大限度地提高这些技术的诊断率,我们提出了预测未来的新方法
正常窦性心律期间单导联心电图发生房颤。直到最近才表明,它
可以通过收集的正常窦性心律的 12 导联心电图来预测未来 AF 的发生
临床环境。在这里,我们建议用市售的单片机来预测 AF 的发生
领先的心电图设备,这将为非临床环境中的早期检测提供可扩展的替代方案。
为了实现这一目标,我们将回顾性分析 10,000 多名个体的原始单导联心电图数据
使用 PAF 进行超过 14 天的监测。然后验证工作将在一组独特的 1,718
参加房颤筛查前瞻性 mSTOPS 临床试验的无症状个体(平均
73 岁),具有完整的临床信息和合并症。该项目的三个目标是:
1. 计算正常窦性心律的个体未来短期内发生 AF 事件的概率
使用经典的单导联心电图特征和基于表示学习的特征。
2. 通过评估在
自正常窦性心律初始监测期起 1、3、6 和 12 个月,并通过验证
使用 mSTOPS 数据集的算法,进行了 3 年的临床随访并注释了合并症。
3. 开发一种技术来提供表征学习特征的初步解释
应用于短期和长期预测的时间序列数据。
这项回顾性研究将开发和优化单导联心电图的新预测技术,
通过消费设备提供,目的是识别患有 AF 高风险的个体。
以这项研究结果为基础的未来方向将包括房颤预测的前瞻性研究
使用消费者单导联心电图来改善临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giorgio Quer其他文献
Giorgio Quer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giorgio Quer', 18)}}的其他基金
Predicting Short- and Long-term Future Occurrence of Atrial Fibrillation from Single-Lead ECG in Normal Sinus Rhythm with an Explainable Deep Learning Model.
使用可解释的深度学习模型,根据正常窦性心律的单导联心电图预测未来短期和长期房颤的发生。
- 批准号:
10195981 - 财政年份:2021
- 资助金额:
$ 22.19万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.19万 - 项目类别:
Research Grant














{{item.name}}会员




