The systematic definition of human protein-peptide interactions, their variants, and the microbiome

人类蛋白质-肽相互作用、其变体和微生物组的系统定义

基本信息

项目摘要

Project Summary Protein-protein interactions are involved in nearly every cellular process yet defining which proteins interact with one another has been challenging. Many of these interactions are dictated by domain that interaction with short linear amino acid sequences. These domains have been conserved across Archaea, Bacteria, and Eukaryota. In Human there are over 1000 proteins that use one of these domains to interaction with other proteins. While many of these domains have been studied we have failed to produce a predictive code of their peptide specificity that would include the functional consequence of mutations. This inability to provide a predictive model is true for one of the most common of these domains in human, the PDZ domain, and many mutations within these domains and their targets have been associate with a variety of diseases. In addition, the PDZs of the human microbiome have been largely ignored because of the misconception that these domains are more prevalent in Eukaryotes. While this is true on an organism by organism basis, there are actually more total PDZ domains in the 100 most common microbes of the human microbiome than all of the human PDZs combined. As disruption of the microbiome has been associated with multiple diseases, these domains and the pathways they control may provide critical insight to the health of the microbiome and the human host. The goal of this work is to provide a predictive understanding of the PDZ domain and its target preference. Long-term we hope to establish this approach as a blueprint method leading to models for all peptide-interacting domains and provide immediate understanding of the consequence of a mutation found in the domain or its targets. Using a newly developed hybrid assay that is sensitive, simple, and high throughput we will first characterize the target preferences of all human PDZ domains. This method captures a greater dynamic range than prior methods and in preliminary work produced more predictive data than prior approaches. Our second Aim is to then characterize all of the PDZ domains of the human microbiome as these represent more divergent domains and have the potential to have a large impact on human health. Finally, we will investigate variation found in human domains associated with disease as well as take a synthetic approach to engineer and understand the domain’s rules of peptide recognition. Together we hope to comprehensively explore the domain and its binding capacity. As genome sequencing becomes a common medical diagnostic, our goal is for our model to be used by the community to understand the potential consequences of any mutations found in the coding sequences of these domains.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcus Blaine Noyes其他文献

Marcus Blaine Noyes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcus Blaine Noyes', 18)}}的其他基金

The systematic definition of human protein-peptide interactions, their variants, and the microbiome
人类蛋白质-肽相互作用、其变体和微生物组的系统定义
  • 批准号:
    10198954
  • 财政年份:
    2019
  • 资助金额:
    $ 53.08万
  • 项目类别:
The systematic definition of human protein-peptide interactions, their variants, and the microbiome
人类蛋白质-肽相互作用、其变体和微生物组的系统定义
  • 批准号:
    10016385
  • 财政年份:
    2019
  • 资助金额:
    $ 53.08万
  • 项目类别:
Defining the multi-dimensional code of zinc finger specificity-Resubmission-1
定义锌指特异性多维编码-Resubmission-1
  • 批准号:
    10093062
  • 财政年份:
    2017
  • 资助金额:
    $ 53.08万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 53.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了