New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
基本信息
- 批准号:10440353
- 负责人:
- 金额:$ 49.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-09-10 至 2023-09-20
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureBasic ScienceBiologicalBiological AssayBiological MarkersBiologyCategoriesCellsChromatin ModelingChromosomesCollaborationsComputational BiologyComputer softwareDNA SequenceDNA StructureDataData AnalysesData SetDevelopmentDiseaseEEG-based imagingGenesGeneticGenomeGenomicsGoalsGrantHi-CImageLassoLeadMapsMeasurementMeasuresMedicalMedicineMethodologyMethodsModelingModernizationNamesNaturePathway interactionsPatternPhenotypePropertyProtein ArrayProtein FamilyPublishingQuantitative GeneticsReportingResearchResearch PersonnelResolutionSamplingSideSignal TransductionStatistical MethodsStatistical ModelsStatistical StudyStructureStudentsTechniquesUncertaintyVariantViral Proteinsalgorithm developmentbasebiomarker signatureclinical investigationdata privacyexperiencegenome wide association studygenome-wide analysishigh dimensionalityimprovedinterestlarge datasetsmagnetic resonance imaging/electroencephalographymultidimensional datanovel strategiesnovel therapeuticsoutcome predictiontheoriestooltraittranscriptome sequencinguser friendly softwarevirology
项目摘要
The analysis of large datasets from computational biology and medicine represents an important chal-
lenge for Statisticians. These data typically have a large number of correlated features with relatively weak
signals for predicting phenotypes of interest. Examples of such data includes DNA sequences and GWAS,
mass-spectra, MRI and EEG images, RNAseq and protein arrays, to name a few. The broad goal of this
ongoing three-investigator grant is to develop and study statistical techniques that enhance the analysis
and interpretation of these data. Our team combines experience in statistical modeling, algorithmic devel-
opment, and theoretical analysis of these techniques. In the new projects, our focus is the development
of state-of-the art methods to exploit known or implied structure in order to extract useful information from
high-dimensional data.
The renewal will address these goals through four Specific Aims. The investigators will study:
1. Principal curves for modeling chromatin architecture. We propose new statistical methodology for
modeling the chromatin structure of DNA based on contact maps derived from Hi-C assays. We use
techniques inspired by principal curves, but applied in the context of metric scaling, that take into
account local structure along the chromosome.
2. Fitting sparse models to large data and to summary data. Many modern datasets (e.g. GWAS with
1M SNPs and 500K subjects) are computationally challenging. We propose computational advances
that enable the lasso to scale to such scenarios. Often the authors of published GWAS studies do
not share the raw data for privacy and other reasons. We propose techniques for approximately fitting
multivariate versions of these models given only the univariate summary scores typically reported.
3. Estimating high-dimensional eigenstructure in virology and genetics. We will exploit low rank struc-
ture in sequence data to compare different methods for inference about sectors in viral proteins. For
quantitative genetics, we will develop statistical theory, methods and software for eigenanalysis of
multiple levels of variation, and specifically for genetic covariance matrices.
4. Prediction with side information. Many studies seek biomarker signatures that are predictive of
outcomes such as disease status under various treatments. We propose a statistical approach for
exploiting side information such as membership in gene pathways or quantitative measures for each
biomarker in order to increase the power for discovering signatures in these challenging domains.
Working together, the investigators and their students will implement the new statistical tools into publi-
cally available software, following a pattern established in earlier cycles of this grant, in which our packages
have found wide use among medical researchers both at Stanford and around the world.
对来自计算生物学和医学的大型数据集的分析是一个重要的挑战
项目成果
期刊论文数量(76)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
- DOI:10.18637/jss.v039.i05
- 发表时间:2011-03
- 期刊:
- 影响因子:5.8
- 作者:Simon N;Friedman J;Hastie T;Tibshirani R
- 通讯作者:Tibshirani R
A SIGNIFICANCE TEST FOR THE LASSO.
- DOI:10.1214/13-aos1175
- 发表时间:2014-04
- 期刊:
- 影响因子:4.5
- 作者:Lockhart R;Taylor J;Tibshirani RJ;Tibshirani R
- 通讯作者:Tibshirani R
Finite-Sample Equivalence in Statistical Models for Presence-Only Data.
在统计模型中,有限样本的等效性仅在于仅存在的数据。
- DOI:10.1214/13-aoas667
- 发表时间:2013-12-01
- 期刊:
- 影响因子:0
- 作者:Fithian W;Hastie T
- 通讯作者:Hastie T
NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES.
- DOI:10.1214/08-aoas198
- 发表时间:2008-12
- 期刊:
- 影响因子:0
- 作者:Zou H;Zhu J;Hastie T
- 通讯作者:Hastie T
Tail sums of Wishart and Gaussian eigenvalues beyond the bulk edge.
- DOI:10.1111/anzs.12201
- 发表时间:2018-03
- 期刊:
- 影响因子:1.1
- 作者:Johnstone IM
- 通讯作者:Johnstone IM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iain M Johnstone其他文献
Iain M Johnstone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iain M Johnstone', 18)}}的其他基金
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
- 批准号:
6173011 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
- 批准号:
6751995 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
- 批准号:
2909842 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
- 批准号:
7640576 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
- 批准号:
6903621 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
- 批准号:
6513032 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
NEW STATISTICAL METHODS FOR MEDICAL SIGNALS AND IMAGES
医疗信号和图像的新统计方法
- 批准号:
6376306 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New statistical methods for medical signals and images
医学信号和图像的新统计方法
- 批准号:
8186445 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
- 批准号:
6687387 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
New Statistical Methods for Medical Signals and Images
医学信号和图像的新统计方法
- 批准号:
9333963 - 财政年份:1996
- 资助金额:
$ 49.27万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 49.27万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 49.27万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 49.27万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 49.27万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 49.27万 - 项目类别:
Standard Grant