Gut microbial fermentation products of muscle-derived lactate as mediators of exercise and metabolism
肌肉来源的乳酸的肠道微生物发酵产物作为运动和代谢的介质
基本信息
- 批准号:10443495
- 负责人:
- 金额:$ 58.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAerobicAerobic ExerciseAffectBacteriaBiological Response Modifier TherapyBlood GlucoseCarbonCoupledCouplesDataDefectDevelopmentDiabetes MellitusDietDisease modelExerciseFFAR2 geneFermentationFiberGTP-Binding ProteinsGlucoseGlycogenGnotobioticHealthHealth BenefitHumanHyperglycemiaImpairmentIn VitroIndividualInjectionsInsulin ResistanceInsulin-Dependent Diabetes MellitusLeadMeasuresMediatingMediator of activation proteinMetabolicMetabolic DiseasesMetabolismMicrobiologyModelingMolecularMusMuscleMuscle MitochondriaMuscle functionNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsOxidesPathologyPerformancePersonsPhysical ExercisePlayPrediabetes syndromeProbioticsProductionPropionatesRoleSerumSignal TransductionSiteSkeletal MuscleSourceSupplementationTestingTissuesTrainingVeillonellaVolatile Fatty AcidsWorkcalmodulin-dependent protein kinase IIexercise capacityexercise intensityexercise trainingexhaustionexperienceglucose metabolismglycemic controlgut bacteriagut microbesgut microbiomegut microbiotaimpaired glucose toleranceimprovedin vivoinsulin secretioninsulin sensitivityknock-downmicrobialmicrobiomemouse modelmuscle metabolismnoveloxidationreceptorresponsesedentaryskeletal muscle metabolismtreadmill
项目摘要
PROJECT SUMMARY/ABSTRACT
The gut microbiome makes significant contributions to whole-body glucose metabolism and insulin sensitivity, in
part, through production of short chain fatty acids (SCFA). Recent evidence suggests that microbial SCFA
production may be increased by exercise training, and that SCFA may be important positive regulators of
exercise performance and skeletal muscle metabolism and function. However, it is not known how gut microbes
could regulate SCFA production in response to exercise. Our work identifies lactate utilizing bacteria (LU-Bac),
which can convert lactate to SCFA, as potential sources of SCFA during exercise. As circulating lactate levels
increase during moderate to high intensity exercise, combining LU-Bac supplementation with exercise may result
in higher levels of circulating SCFA, thus enhancing the metabolic benefits of exercise. Individuals with impaired
glucose tolerance have lower gut LU-Bac content, and blunted metabolic and aerobic improvements in response
to exercise training. Thus, in addition to improving metabolic health, LU-Bac supplementation may enhance the
health benefits of exercise by ameliorating the metabolic defects that lead to impaired training response. We
hypothesize that lactate produced by muscle with regular exercise is used by LU-Bac to generate SCFA, which
then act on skeletal muscle to improve metabolism and function. We propose this novel gut-muscle axis leads
to improved metabolic health and exercise response. One aim of this proposal is to test LU-Bac supplementation
as a treatment for impaired glucose tolerance and low response to exercise in mouse models of metabolic
disease that partially reflect the pathologies of type 1 and type 2 diabetes. A second aim is to determine the
specific contribution of lactate fermentation by LU-Bac to circulating and tissue SCFA levels with exercise, and
whether LU-Bac-derived SCFA contribute to the health benefits of exercise training. Our third aim is to define
the mechanisms in skeletal muscle by which SCFA lead to enhanced exercise performance and metabolic
health. Specifically, we will determine whether SCFA receptors and transporters in muscle are necessary for
the positive effects of SCFA on muscle metabolism and function. This work will have a broad impact on the
fields of exercise, metabolism, and microbiology by determining the mechanisms by which the microbiome can
enhance muscle metabolism and adaptation to exercise. We anticipate our results will lead to development of a
live biotherapeutic to improve exercise response and metabolic health.
项目总结/摘要
肠道微生物组对全身葡萄糖代谢和胰岛素敏感性做出了重大贡献,
部分,通过生产短链脂肪酸(SCFA)。最近的证据表明,微生物SCFA
运动训练可能会增加产量,SCFA可能是重要的正调节因子,
运动能力和骨骼肌代谢和功能。然而,目前尚不清楚肠道微生物
可以调节SCFA的产生以响应运动。我们的工作鉴定了乳酸利用细菌(LU-Bac),
其可以将乳酸盐转化为SCFA,作为运动期间SCFA的潜在来源。循环乳酸水平
在中到高强度运动期间增加,结合LU-Bac补充与运动可能导致
在更高水平的循环SCFA,从而提高运动的代谢效益。受损的个体
葡萄糖耐量降低了肠道LU-Bac含量,并减弱了代谢和有氧改善的反应,
进行锻炼训练。因此,除了改善代谢健康外,LU-Bac补充剂还可以增强
通过改善导致训练反应受损的代谢缺陷来改善运动对健康的益处。我们
假设LU-Bac利用肌肉在规律运动中产生乳酸盐来产生SCFA,
然后作用于骨骼肌以改善新陈代谢和功能。我们提出了这种新型的肠肌轴导线
改善代谢健康和运动反应。该提案的一个目的是测试LU-Bac补充剂
作为代谢性疾病小鼠模型中葡萄糖耐量受损和对运动低反应的治疗
1型糖尿病和2型糖尿病的发病机制第二个目标是确定
LU-Bac乳酸发酵对运动循环和组织SCFA水平的特定贡献,以及
LU-Bac衍生的SCFA是否有助于运动训练的健康益处。我们的第三个目标是定义
SCFA在骨骼肌中的机制导致增强的运动表现和代谢
健康具体来说,我们将确定肌肉中的SCFA受体和转运蛋白是否是
SCFA对肌肉代谢和功能的积极影响。这项工作将产生广泛的影响,
运动,代谢和微生物学领域,通过确定微生物组可以
增强肌肉新陈代谢和对运动的适应。我们预计我们的研究结果将导致发展一个
live biofilm改善运动反应和代谢健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandar David Kostic其他文献
Aleksandar David Kostic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandar David Kostic', 18)}}的其他基金
Gut microbial fermentation products of muscle-derived lactate as mediators of exercise and metabolism
肌肉来源的乳酸的肠道微生物发酵产物作为运动和代谢的介质
- 批准号:
10595023 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
相似海外基金
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10548811 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10314779 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10580466 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
The Effects of Blood Flow Restriction During Acute Aerobic Exercise on Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1a) Expression
急性有氧运动期间血流限制对过氧化物酶体增殖物激活受体γ共激活物1-α(PGC-1a)表达的影响
- 批准号:
529237-2018 - 财政年份:2018
- 资助金额:
$ 58.87万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The Influence of Acute Bouts of Aerobic Exercise on Neuroplasticity and Motor Learning after Stroke
急性有氧运动对中风后神经可塑性和运动学习的影响
- 批准号:
343900 - 财政年份:2016
- 资助金额:
$ 58.87万 - 项目类别:
Operating Grants
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2016
- 资助金额:
$ 58.87万 - 项目类别:
Postgraduate Scholarships - Doctoral
The effects of acute aerobic exercise on memory function
急性有氧运动对记忆功能的影响
- 批准号:
15K12687 - 财政年份:2015
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2015
- 资助金额:
$ 58.87万 - 项目类别:
Postgraduate Scholarships - Doctoral
Potential for gene expression by acute aerobic exercise with locally force of muscle
局部肌肉力量急性有氧运动的基因表达潜力
- 批准号:
26750317 - 财政年份:2014
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2014
- 资助金额:
$ 58.87万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




