Building and implementing a TBI prognostic model featuring real-time analysis of brain CT images
构建并实施具有脑部 CT 图像实时分析功能的 TBI 预后模型
基本信息
- 批准号:10446746
- 负责人:
- 金额:$ 66.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAdmission activityAffectAmericanBrainCaringCause of DeathClinicalClinical TrialsCollaborationsComplexComplicationCountryDataData SetDatabasesDecision MakingDiagnosisEarly DiagnosisEmergency CareEnvironmentEpidemicFutureGoalsHealth systemHealthcareHealthcare SystemsHemorrhageHospitalsHourInflammationInfrastructureInjuryInstitutionInterventionLeftMedical HistoryMethodsModelingModernizationMonitorNeural Network SimulationNeurologicOutcomeOutputPathway interactionsPatient riskPatient-Focused OutcomesPatientsPerformanceProceduresProcessPrognosisProspective cohortProviderPsyche structureResourcesRiskRunningSecureSensitivity and SpecificityShipsSiteTBI treatmentTechnologyTestingTimeTrainingTraining and EducationTraumaTraumatic Brain InjuryTriageUnited StatesUniversitiesUpdateValidationWithdrawalWorkX-Ray Computed Tomographybaseclinical careclinical riskcohortcombatcomputer infrastructurecostdashboarddata infrastructuredata warehousedeep learning modeldeep neural networkdemographicsdesigndisabilitydiscrete timeexperienceexperimental studyimprovedmachine learning modelmild traumatic brain injurymodel buildingnetwork architectureneural network architectureneuron lossneurosurgeryphysically handicappedpredictive modelingpredictive toolsprognostic modelprospectivereadmission ratesreal-time imagestooltreatment guidelinesyoung adult
项目摘要
Scope of Work
Duke will complete all work for the machine learning model building and implementation of the model into the
Duke clinical workflow. For Aim 1 of the project, this work will include data extraction and cleaning, neural network
architecture design, and model optimization and validation. For Aim 2, this work will include establishment of
technical infrastructure for real-time image and access and processing, construction of a front-end dashboard in
close collaboration with frontline clinicians, and deployment and prospective validation of the model. The latter
step will also consist of education and training of hospital users. For Aim 3 of the project, Duke will guide staff at
Jefferson through the model implementation and validation process, with the active integration and training
performed by staff at Jefferson. In Aim 3 Duke will also run the experiments on multi-site model generalization,
using retrospective data at both Duke and Jefferson. Data will be shared between Duke and Jefferson via secure
ethernet transfer between Jefferson’s secure data warehouse and Duke’s Protected Analytics and Computing
Environment. The end goal of the work will be to provide a sophisticated, high-accuracy, and seamlessly
integrated tool for predicting the risk of actionable TBI complications over the course of a TBI patient’s hospital
encounter. This method, which will augment decision-making for treating a complex neurological condition, will
significantly improve overall TBI outcomes, reduce readmission rates, and minimize the extraordinary costs
incurred by inefficient provision of healthcare resources.
工作范围
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy William Dunn其他文献
Timothy William Dunn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy William Dunn', 18)}}的其他基金
Building and implementing a TBI prognostic model featuring real-time analysis of brain CT images
构建并实施具有脑部 CT 图像实时分析功能的 TBI 预后模型
- 批准号:
10579329 - 财政年份:2022
- 资助金额:
$ 66.23万 - 项目类别:














{{item.name}}会员




