Understanding feedforward and feedback signaling between neuronal populations

了解神经元群体之间的前馈和反馈信号

基本信息

  • 批准号:
    10446820
  • 负责人:
  • 金额:
    $ 199.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Summary Most perceptual, cognitive, and motor functions rely on neuronal activity distributed across multiple networks, often located in different brain areas. In many systems, including the visual system, signaling between areas is bidirectional: lower areas communicate with higher ones via feedforward connections, and higher areas signal to lower areas via feedback. Feedforward pathways are thought to underlie the increasingly sophisticated receptive fields as one ascends the visual hierarchy. The role of feedback signaling in visual processing, in contrast, is poorly understood. Feedback has been proposed to underlie a diverse set of interrelated functions including providing contextual information, predictions, learning signals, and attentional and expectation signals. Testing these proposals has proven experimentally difficult: it requires assessing not only what signals are sent from higher to lower cortex but also how feedback signals interact with ongoing population activity in the target area to influence the feedforward signals relayed back to higher areas. In this project we aim to understand how inter-areal feedforward and feedback signaling work together to underlie visual function. We will do so by determining the signals conveyed by neuronal population spiking responses—which underlie cortical representation—in the feedforward and feedback direction. We will use high yield multi-area neuronal recordings; a new conceptual framework of how inter-areal signaling is implemented; and new analytical tools that will allow us to disentangle the influence of feedforward, recurrent, and feedback signaling, even when these are concurrently active. Our working hypothesis is feedforward-feedback loops implement a form of predictive coding, a concept that to date has been tested primarily using single neuron responses rather than the hierarchical flow of population signals. In Aim 1, we will test this hypothesis by analyzing simultaneously recorded neuronal population responses evoked in macaque V1/V2 and V1/V4, by a broad but targeted set of visual stimuli. In Aim 2, we will develop a hierarchical spiking network model of predictive coding. The model will allow us to relate existing theoretical constructs to the responses measured in our experiments and to understand how the pattern of inter-areal signaling observed in data contributes to (or constrains) predictive coding computation. In Aim 3, we will test how active predictions, made by animals performing a perceptual decision-making task, are relayed between cortical areas and shape visual cortical representations. Our ambitious goals will be accomplished by pooling the complementary expertise of three PIs, building on an established and successful collaboration. Successful completion of this project will shift the study of inter- network signaling from single neuron to population-based interactions and will test a central concept in neuroscience—hierarchical predictive coding. We expect the understanding we gain, and the analytic and conceptual tools we develop, will be broadly applicable. Because inter-areal signaling is dysregulated in several disorders, our findings may also lay the groundwork for developing treatments in future work.
总结 大多数感知、认知和运动功能依赖于分布在多个网络中的神经元活动, 通常位于不同的大脑区域。在许多系统中,包括视觉系统,区域之间的信号传递是 双向:较低区域通过前馈连接与较高区域通信,较高区域发出信号 通过反馈来降低区域。前馈通路被认为是越来越复杂的 感受野的变化。反馈信号在视觉处理中的作用, 对比之下,人们对此知之甚少。反馈被认为是一系列相互关联的功能的基础 包括提供上下文信息、预测、学习信号以及注意力和期望 信号.测试这些提议在实验上被证明是困难的:它不仅需要评估哪些信号, 从更高的皮层发送到更低的皮层,以及反馈信号如何与正在进行的群体活动相互作用, 目标区域影响被中继回更高区域的前馈信号。在这个项目中,我们的目标是 了解区域间前馈和反馈信号如何共同作用于视觉功能。我们 将通过确定由神经元群体尖峰响应传递的信号来实现, 皮层代表-在前馈和反馈方向。我们将使用高产量的多区域神经元 记录;关于如何实施区域间信号的新概念框架;以及新的分析工具 这将使我们能够解开前馈,经常性和反馈信号的影响,即使当 这些是同时有效的。我们的工作假设是前馈反馈回路实现了一种形式的 预测编码,迄今为止,这一概念主要使用单神经元反应进行测试,而不是 人口信号的等级流动。在目标1中,我们将通过同时分析 记录猕猴V1/V2和V1/V4中诱发的神经元群体反应,通过一组广泛但有针对性的 视觉刺激在目标2中,我们将开发预测编码的分层尖峰网络模型。模型 将使我们能够将现有的理论结构与我们实验中测量的反应联系起来,并 了解数据中观察到的区域间信号模式如何有助于(或限制)预测 编码计算在目标3中,我们将测试动物进行知觉预测时, 决策任务,在皮层区域之间传递,并形成视觉皮层表征。我们 将通过汇集三个PI的互补专业知识来实现雄心勃勃的目标, 建立和成功的合作。该项目的成功完成将使跨- 网络信号从单个神经元到基于群体的相互作用,并将测试一个中心概念, 神经科学层次预测编码。我们期待我们获得的理解,以及分析和 我们开发的概念工具将广泛适用。由于区域间信号传导失调, 虽然我们的研究结果可能会导致多种疾病,但我们的研究结果也可能为未来的治疗方法奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ADAM KOHN其他文献

ADAM KOHN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ADAM KOHN', 18)}}的其他基金

CRCNS: Dissecting Directed Interactions Amongst Multiple Neuronal Populations
CRCNS:剖析多个神经元群之间的定向相互作用
  • 批准号:
    10830525
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
Visual Crowding
视觉拥挤
  • 批准号:
    9637390
  • 财政年份:
    2018
  • 资助金额:
    $ 199.96万
  • 项目类别:
Visual Crowding
视觉拥挤
  • 批准号:
    9704285
  • 财政年份:
    2018
  • 资助金额:
    $ 199.96万
  • 项目类别:
Visual Crowding
视觉拥挤
  • 批准号:
    10357945
  • 财政年份:
    2018
  • 资助金额:
    $ 199.96万
  • 项目类别:
Learning and updating internal visual models
学习和更新内部视觉模型
  • 批准号:
    8990935
  • 财政年份:
    2015
  • 资助金额:
    $ 199.96万
  • 项目类别:
Learning and updating internal visual models
学习和更新内部视觉模型
  • 批准号:
    9334881
  • 财政年份:
    2015
  • 资助金额:
    $ 199.96万
  • 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
  • 批准号:
    8305755
  • 财政年份:
    2010
  • 资助金额:
    $ 199.96万
  • 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
  • 批准号:
    8515423
  • 财政年份:
    2010
  • 资助金额:
    $ 199.96万
  • 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
  • 批准号:
    8118034
  • 财政年份:
    2010
  • 资助金额:
    $ 199.96万
  • 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
  • 批准号:
    8055168
  • 财政年份:
    2010
  • 资助金额:
    $ 199.96万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 199.96万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 199.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了