Understanding feedforward and feedback signaling between neuronal populations
了解神经元群体之间的前馈和反馈信号
基本信息
- 批准号:10446820
- 负责人:
- 金额:$ 199.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimalsAreaAttentionBackBrainCodeCognitiveCollaborationsCommunicationComputer ModelsDataDecision MakingDiseaseFeedbackFutureGoalsLearningMacacaMeasuresMental disordersModelingMotorNeuronsNeurosciencesPathway interactionsPatternPopulationRecurrenceRoleSchizophreniaShapesSignal TransductionStimulusStructureSystemTask PerformancesTestingTrainingVisionVisualVisual CortexVisual system structureWorkanalytical methodanalytical toolarea V1area V4autism spectrum disorderbaseexpectationexperimental studyextrastriate visual cortexnetwork modelspopulation basedpredictive modelingreceptive fieldresponsetheoriestoolvisual processingvisual stimulus
项目摘要
Summary
Most perceptual, cognitive, and motor functions rely on neuronal activity distributed across multiple networks,
often located in different brain areas. In many systems, including the visual system, signaling between areas is
bidirectional: lower areas communicate with higher ones via feedforward connections, and higher areas signal
to lower areas via feedback. Feedforward pathways are thought to underlie the increasingly sophisticated
receptive fields as one ascends the visual hierarchy. The role of feedback signaling in visual processing, in
contrast, is poorly understood. Feedback has been proposed to underlie a diverse set of interrelated functions
including providing contextual information, predictions, learning signals, and attentional and expectation
signals. Testing these proposals has proven experimentally difficult: it requires assessing not only what signals
are sent from higher to lower cortex but also how feedback signals interact with ongoing population activity in
the target area to influence the feedforward signals relayed back to higher areas. In this project we aim to
understand how inter-areal feedforward and feedback signaling work together to underlie visual function. We
will do so by determining the signals conveyed by neuronal population spiking responses—which underlie
cortical representation—in the feedforward and feedback direction. We will use high yield multi-area neuronal
recordings; a new conceptual framework of how inter-areal signaling is implemented; and new analytical tools
that will allow us to disentangle the influence of feedforward, recurrent, and feedback signaling, even when
these are concurrently active. Our working hypothesis is feedforward-feedback loops implement a form of
predictive coding, a concept that to date has been tested primarily using single neuron responses rather than
the hierarchical flow of population signals. In Aim 1, we will test this hypothesis by analyzing simultaneously
recorded neuronal population responses evoked in macaque V1/V2 and V1/V4, by a broad but targeted set of
visual stimuli. In Aim 2, we will develop a hierarchical spiking network model of predictive coding. The model
will allow us to relate existing theoretical constructs to the responses measured in our experiments and to
understand how the pattern of inter-areal signaling observed in data contributes to (or constrains) predictive
coding computation. In Aim 3, we will test how active predictions, made by animals performing a perceptual
decision-making task, are relayed between cortical areas and shape visual cortical representations. Our
ambitious goals will be accomplished by pooling the complementary expertise of three PIs, building on an
established and successful collaboration. Successful completion of this project will shift the study of inter-
network signaling from single neuron to population-based interactions and will test a central concept in
neuroscience—hierarchical predictive coding. We expect the understanding we gain, and the analytic and
conceptual tools we develop, will be broadly applicable. Because inter-areal signaling is dysregulated in
several disorders, our findings may also lay the groundwork for developing treatments in future work.
摘要
大多数知觉、认知和运动功能依赖于分布在多个网络中的神经元活动,
通常位于不同的大脑区域。在许多系统中,包括视觉系统,区域之间的信号是
双向:较低的区域与较高的区域通过前馈连接进行通信,较高的区域发出信号
通过反馈降低到较低的区域。前馈通路被认为是日益复杂的
当一个人在视觉层次上向上攀登时,接受场。反馈信号在视觉处理中的作用
相比之下,人们对此知之甚少。已经提出了反馈来支持一组不同的相互关联的功能
包括提供上下文信息、预测、学习信号以及注意力和期望
信号。事实证明,测试这些建议在实验上是困难的:它不仅需要评估什么信号
反馈信号是如何与正在进行的人群活动相互作用的
影响目标区域的前馈信号回传到更高的区域。在这个项目中,我们的目标是
了解区域间前馈和反馈信号如何共同作用来支持视觉功能。我们
将通过确定神经元群体尖峰反应所传达的信号来实现这一点--这是
大脑皮层表示--在前馈和反馈方向。我们将使用高产量的多区域神经元
录音;如何实施区域间信号传递的新概念框架;以及新的分析工具
这将使我们能够理清前馈、循环和反馈信号的影响,即使在
它们同时处于活动状态。我们的工作假设是前馈-反馈循环实现了一种形式的
预测编码,到目前为止,这个概念主要是使用单个神经元的反应进行测试,而不是
人口信号的分级流动。在目标1中,我们将通过同时分析来检验这一假设
在猕猴V1/V2和V1/V4中记录的神经元群体反应,由一组广泛但有针对性的
视觉刺激。在目标2中,我们将开发预测编码的分层尖峰网络模型。模型
将使我们能够将现有的理论结构与在我们的实验中测量的响应联系起来,并
了解在数据中观察到的区域间信号模式如何有助于(或约束)预测
编码计算。在目标3中,我们将测试动物如何通过感知做出积极的预测
决策任务,在大脑皮层区域之间传递,形成视觉大脑皮层表征。我们的
雄心勃勃的目标将通过汇集三个绩效指标的互补专业知识来实现,建立在
建立和成功的合作。该项目的顺利完成将使国际上的研究发生转移。
从单个神经元到基于群体的相互作用的网络信号发送,并将测试
神经科学。分层预测编码。我们期待着我们获得的理解,以及分析和
我们开发的概念性工具将广泛适用。因为区域间信号在
几种疾病,我们的发现也可能为未来工作中开发治疗方法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM KOHN其他文献
ADAM KOHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM KOHN', 18)}}的其他基金
CRCNS: Dissecting Directed Interactions Amongst Multiple Neuronal Populations
CRCNS:剖析多个神经元群之间的定向相互作用
- 批准号:
10830525 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
- 批准号:
8305755 - 财政年份:2010
- 资助金额:
$ 199.96万 - 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
- 批准号:
8515423 - 财政年份:2010
- 资助金额:
$ 199.96万 - 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
- 批准号:
8118034 - 财政年份:2010
- 资助金额:
$ 199.96万 - 项目类别:
CRCNS: Spatiotemporal Scene Statistics and Contextual Influences in Vision
CRCNS:视觉中的时空场景统计和上下文影响
- 批准号:
8055168 - 财政年份:2010
- 资助金额:
$ 199.96万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 199.96万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 199.96万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 199.96万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 199.96万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 199.96万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)