Prediction of risk of disability worsening and inflammatory disease activity in MS utilizing multimodal prediction algorithms
利用多模态预测算法预测 MS 中残疾恶化和炎症性疾病活动的风险
基本信息
- 批准号:10447083
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsArchitectureAwardBenignBig DataBiological MarkersBiostatistical MethodsBlood specimenBrainCharacteristicsClinicalClinical TrialsComputerized Medical RecordCounselingDataData SetDecision MakingDemographic FactorsDevelopmentDevicesDigit structureDiseaseDisease OutcomeElementsEnhancing LesionEnrollmentExhibitsFutureGoalsHandHealthHealth systemImageIndividualInflammatoryLaboratoriesLearningLesionLightMagnetic Resonance ImagingManualsMeasuresMedicalModalityModelingMonitorMultiple SclerosisOutcomeParticipantPatient CarePatientsPersonsPhenotypePopulationPredictive ValuePrognostic FactorRecording of previous eventsRelapseReportingResearchResearch PersonnelRisk AssessmentRisk FactorsSerumSeverity of illnessStandardizationStratificationTechnologyTestingTherapeuticTrainingUniversitiesValidationVisitWalkingbasebiobankcareerclinical practiceclinical predictorsclinical riskclinically relevantcomorbiditydemographicsdesigndexteritydisabilitydisability riskfollow-upfootgray matterhigh dimensionalityinsightinter-individual variationlifestyle factorsmachine learning methodmultimodalityneurofilamentneuroimagingnovelnovel diagnosticsperformance testspersonalized medicineprediction algorithmprocessing speedprognosticresponserisk predictionstatistical and machine learningtoolwalking speed
项目摘要
Project Summary:
Multiple sclerosis (MS) exhibits a markedly heterogeneous and unpredictable course, with a clinical
spectrum ranging from very mild forms of the disease in some patients (often termed “benign MS”) to an
aggressive disease course with rapid accumulation of disability in others. Furthermore, there appears to be
significant inter-individual variability in the responses to the many available disease-modifying therapies (DMT).
A variety of factors have been proposed to be associated with the disease course in MS, including demographics,
lifestyle factors, clinical characteristics, MRI-derived measures, and elevated serum neurofilament light chain
(NfL), among others. It remains unclear though if these factors are complementary or redundant in their predictive
value. Moreover, there is a lack of validated tools to accurately predict, at an individual level, future inflammatory
disease activity or disability worsening. This is largely due to the lack of datasets with sufficient size, breadth and
representativeness. The use of electronic medical records (EMR) has dramatically increased in recent years,
enabling the capture of a wide variety of data measures from large numbers of individuals. Furthermore, the
development and refinement of statistical machine learning methods has revolutionized the approach to analysis
of such high-dimensional datasets. This background provides a unique opportunity to leverage and analyze “big
data” in order to develop clinical risk prediction algorithms and personalized medicine tools in MS.
Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) is a network of 10
MS centers that have standardized elements of their clinical practice to implement a centralized health
information exchange architecture. MS PATHS was designed around the concept of a learning health system
(LHS), merging research with ongoing patient care by collecting standardized clinical and imaging data during
routine medical visits. As of August, 2019, >15,000 patients have opted to participate in MS PATHS. Thus, the
MS PATHS network is an ideal, deeply phenotyped, “real-world”, large population of people with MS, in which
clinically relevant predictive algorithms may be developed and validated.
The goal of the current project is to develop and validate multi-modal predictive algorithms of clinically
relevant disease outcomes in MS. We hypothesize that integrating a wide variety of potential predictors, including
demographics, clinical characteristics (including current/historical DMT use), comorbidities/lifestyle factors, MRI-
derived measures and laboratory data (including serum NfL) will lead to the development and validation of
algorithms that may accurately predict future clinical disability worsening and inflammatory disease activity.
Furthermore, this approach will allow the assessment of the individual contribution of specific predictors to the
developed predictive algorithms, and may aid with the identification of novel risk factors of disease severity in
MS.
项目概要:
多发性硬化症(MS)表现出明显的异质性和不可预测的过程,与临床
从一些患者中非常轻微的疾病形式(通常称为“良性MS”)到
侵袭性病程,在其他人身上迅速累积残疾。此外,似乎有
对许多可用的疾病修饰疗法(DMT)的反应存在显著的个体间差异。
已提出多种因素与MS的病程相关,包括人口统计学,
生活方式因素、临床特征、MRI衍生指标和血清神经丝轻链升高
(NfL)等等。但目前尚不清楚这些因素在其预测中是互补还是多余
值此外,缺乏有效的工具来准确预测,在个人水平上,未来的炎症,
疾病活动或残疾恶化。这在很大程度上是由于缺乏足够大小、广度和
代表性。近年来,电子病历(EMR)的使用急剧增加,
使得能够从大量个体捕获各种各样的数据测量。而且
统计机器学习方法的发展和改进彻底改变了分析方法
此类高维数据集的。这一背景提供了一个独特的机会,利用和分析“大
数据”,以便在MS中开发临床风险预测算法和个性化医疗工具。
多发性硬化症合作伙伴推进技术和健康解决方案(MS PATHS)是一个由10个
MS中心已将其临床实践的要素标准化,
信息交换架构。MS PATHS是围绕学习健康系统的概念而设计的
(LHS),通过收集标准化的临床和成像数据,将研究与正在进行的患者护理相结合,
例行医疗检查。截至2019年8月,超过15,000名患者选择参加MS PATHS。因此
MS PATHS网络是一个理想的、深度表型化的、“真实世界”的、大量MS患者群体,其中
可以开发和验证临床相关的预测算法。
当前项目的目标是开发和验证临床上的多模态预测算法。
我们假设,整合各种潜在的预测因子,包括
人口统计学、临床特征(包括当前/历史DMT使用)、合并症/生活方式因素、MRI-
衍生的测量和实验室数据(包括血清NfL)将导致开发和验证
可以准确预测未来临床残疾恶化和炎性疾病活动的算法。
此外,这一方法将允许评估特定预测因子对预测结果的个别贡献。
开发了预测算法,并可能有助于识别疾病严重程度的新风险因素,
女士
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elias S Sotirchos其他文献
Elias S Sotirchos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elias S Sotirchos', 18)}}的其他基金
Prediction of risk of disability worsening and inflammatory disease activity in MS utilizing multimodal prediction algorithms
利用多模态预测算法预测 MS 中残疾恶化和炎症性疾病活动的风险
- 批准号:
10224357 - 财政年份:2020
- 资助金额:
$ 16.74万 - 项目类别:
Prediction of risk of disability worsening and inflammatory disease activity in MS utilizing multimodal prediction algorithms
利用多模态预测算法预测 MS 中残疾恶化和炎症性疾病活动的风险
- 批准号:
10665689 - 财政年份:2020
- 资助金额:
$ 16.74万 - 项目类别:
Prediction of risk of disability worsening and inflammatory disease activity in MS utilizing multimodal prediction algorithms
利用多模态预测算法预测 MS 中残疾恶化和炎症性疾病活动的风险
- 批准号:
10039145 - 财政年份:2020
- 资助金额:
$ 16.74万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant