Markov State Model approaches for folding, binding and design
用于折叠、装订和设计的马尔可夫状态模型方法
基本信息
- 批准号:10446465
- 负责人:
- 金额:$ 39.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityBindingCOVID-19 screeningCollaborationsColoradoComputer HardwareComputing MethodologiesCoupledCouplingCyclic PeptidesDataDimerizationDissociationDrug resistanceFox Chase Cancer CenterFree EnergyFundingHealthHomeHumanJointsLeadLigand BindingLigandsMacrolidesMalignant NeoplasmsMethodsModelingMolecularMolecular ConformationMuramidaseMutationNatural ProductsNeoplasm MetastasisPTEN genePathway interactionsPeptidesPhysicsPopulationProtease InhibitorProtein DynamicsPublishingReactionResearchRoleSamplingSeriesStructureSystemTestingTherapeuticThermodynamicsTimeToyTumor Suppressor ProteinsUniversitiesVariantWorkbasecluster computingcomputational platformcoronavirus diseasecostcrowdsourcingdesigndrug discoveryimprovedinhibitormachine learning classifiermarkov modelmodels and simulationmutantnovel diagnosticsopen datapandemic coronavirusprotein foldingreceptorsimulationtoolvirtual screening
项目摘要
Project Summary
Understanding the conformational dynamics of proteins and their binding partners is crucial to predicting and
designing their function. Molecular simulations are suitable for this task, but remain challenging for ligand
binding systems where dissociation occurs on very slow time scales. We are developing new Markov state
model (MSM) approaches, which describe conformational dynamics as a network of transitions between
metastable states, to address this challenge. Multi-scale Markov models (MEMMs) offer a robust framework
for building variationally optimal models of dynamics on long time scales, from ensembles of short trajectories
sampled in biased thermodynamic ensembles, to predict ligand binding affinities, rates and mechanisms.
During the coronavirus pandemic, our group used the distributed computing platform Folding@home (FAH)
to perform virtual screening of SARS-CoV-2 main protease inhibitors by utilizing expanded-ensemble (EE)
simulations, in which multiple alchemical intermediates can be sampled in a single simulation, to estimate
binding free energies. This has inspired us to combine EE and MSM methods that can leverage the power of
FAH to make fundamental advances in virtual screening and molecular design, in three specific aims:
Our first aim is to improve EE methods for computing ligand binding free energies. In collaboration with the
Shirts Lab, we seek to understand and ameliorate convergence issues, and explore and unify related
approaches. We will investigate how well EE estimates of free energies of mutations can be used with MEMMs
to predict changes in protein folding stability and rates. Finally, we will work with the Karanicolas Lab to
determine the extent to which EE-calculated ABFEs on FAH can be used alongside advanced machine
learning classifiers to discover both active and potent inhibitors from structure-based virtual screening studies.
Our second aim is to develop a combined metadynamics (metaD) + MEMM approach for modeling binding
reactions. We will develop and test two different strategies in which metaD is used to derive negative potentials
of mean force along binding reaction coordinates that can be used as bias potentials for constructing multi-
ensemble Markov models (MEMMs) of ligand binding. We will test these methods in toy binding systems, and
small ligands of L99A lysozyme. Finally, we will apply metaD+MEMMs to predict affinities, rates and
mechanisms of the macrolide natural product carolacton binding to FolD and its known drug-resistant mutants.
Our third aim is to examine the extent to which solution-state preorganization determines binding affinity,
and whether simulation-based modeling can use this idea quantitatively for computational design. For a
corpus of 105 cyclic peptides with published affinities, EE+MSM approaches will test the validity of a two-step
conformational selection model. The results of this work will guide the design, testing and optimization of cyclic
peptide binders to disrupt dimerization of the tumor suppressor PTEN, a collaboration with the Rongsheng
Wang Lab at Temple, to find new diagnostics/therapeutics for cancer metastasis.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Voelz其他文献
Vincent Voelz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Voelz', 18)}}的其他基金
Markov State Model approaches for folding, binding and design
用于折叠、装订和设计的马尔可夫状态模型方法
- 批准号:
9923709 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
Markov State Model approaches for folding, binding and design
用于折叠、装订和设计的马尔可夫状态模型方法
- 批准号:
10708149 - 财政年份:2017
- 资助金额:
$ 39.76万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 39.76万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 39.76万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 39.76万 - 项目类别:
Studentship