Interpretable Deep Learning Algorithms for Pathology Image Analysis

用于病理图像分析的可解释深度学习算法

基本信息

  • 批准号:
    10448333
  • 负责人:
  • 金额:
    $ 44.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Interpretable Deep Learning Algorithms for Pathology Image Analysis Abstract The microscopic examination of stained tissue is a fundamental component of biomedical research and for the understanding of biological processes of disease which leads to improved diagnosis, prognosis and therapeutic response prediction. Ranging from cancer diagnosis to heart rejection and forensics the subjective interpretation of histopathology sections forms the basis of clinical decision making and research outcomes. However, it has been shown that such subjective interpretation of pathology slides suffers from large interobserver and intraobserver variability. Recent advances in computer vision and deep learning has enabled the objective and automated analysis of images. These methods have been applied with success to histology images which have demonstrated potential for development of objective image interpretation paradigms. However, significant algorithmic challenges remain to be addressed before such objective analysis of histology images can be used by clinicians and researchers. Leveraging extensive experience in developing and decimating research software based on deep learning the PI will pioneer novel algorithmic approaches to address these challenges including but not limited to: (1) training data-efficient and interpretable deep learning models with gigapixel size microscopy images for classification and segmentation using weakly supervised labels (2) fundamental redesign of data fusion paradigms for integrating information from microscopy images and molecular profiles (from multi-omics data) for improved diagnostic and prognostic determinations (3) developing visualization and interpretation software for researchers and clinical workflows to improve clinical and research validation and reproducability. The system will be designed in a modular, user-friendly manner and will be open-source, available through GitHub as universal plug-and-play modules ready to be adapted to various clinical and research applications. We will also develop a web resource with pretrained models for various organs, disease states and subtypes these will be accompanied with detailed manuals so researchers can apply deep learning to their specific research problems. Overall, the laboratory’s research will yield high impact discoveries from pathology image analysis, and its software will enable many other NIH funded laboratories to do the same, across various biomedical disciplines.
用于病理图像分析的可解释深度学习算法 摘要 染色组织的显微镜检查是生物医学研究的基本组成部分, 了解疾病的生物学过程,从而改善诊断,预后和治疗 响应预测从癌症诊断到心脏排斥反应和法医学, 组织病理学切片构成了临床决策和研究结果的基础。但却 已经表明,病理切片的这种主观解释受到大的观察者间的影响, 观察者内变异性计算机视觉和深度学习的最新进展使客观和 图像的自动分析。这些方法已成功地应用于组织学图像, 证明了客观图像解释范例的发展潜力。然而,重要的 在对组织学图像进行这种客观分析之前, 临床医生和研究人员。利用在开发和抽取研究软件方面的丰富经验 基于深度学习,PI将开创新的算法方法来解决这些挑战,包括 但不限于:(1)使用千兆像素大小的显微镜训练数据高效且可解释的深度学习模型 使用弱监督标签进行分类和分割的图像(2)数据的基本重新设计 用于整合来自显微镜图像和分子概况(来自多组学)的信息的融合范例 数据)用于改进诊断和预后测定(3)开发可视化和解释 用于研究人员和临床工作流程的软件,以改善临床和研究验证和可重复性。 该系统将以模块化、用户友好的方式设计,并将是开放源码的,可通过 GitHub作为通用的即插即用模块,可随时适应各种临床和研究应用。 我们还将开发一个网络资源,其中包含各种器官、疾病状态和亚型的预训练模型 这些将伴随着详细的手册,以便研究人员可以将深度学习应用于他们的特定领域。 研究问题。总的来说,该实验室的研究将从病理学图像中产生高影响力的发现。 分析,其软件将使许多其他NIH资助的实验室做同样的,在各种 生物医学学科

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Faisal Mahmood其他文献

Faisal Mahmood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Faisal Mahmood', 18)}}的其他基金

Interpretable Deep Learning Algorithms for Pathology Image Analysis
用于病理图像分析的可解释深度学习算法
  • 批准号:
    10256621
  • 财政年份:
    2020
  • 资助金额:
    $ 44.75万
  • 项目类别:
Interpretable Deep Learning Algorithms for Pathology Image Analysis
用于病理图像分析的可解释深度学习算法
  • 批准号:
    10029418
  • 财政年份:
    2020
  • 资助金额:
    $ 44.75万
  • 项目类别:
Interpretable Deep Learning Algorithms for Pathology Image Analysis
用于病理图像分析的可解释深度学习算法
  • 批准号:
    10389487
  • 财政年份:
    2020
  • 资助金额:
    $ 44.75万
  • 项目类别:
Interpretable Deep Learning Algorithms for Pathology Image Analysis
用于病理图像分析的可解释深度学习算法
  • 批准号:
    10679024
  • 财政年份:
    2020
  • 资助金额:
    $ 44.75万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了