In situ Cell Engineering for On-demand TIMP Expression in Osteoarthritis

用于骨关节炎按需表达 TIMP 的原位细胞工程

基本信息

  • 批准号:
    10451707
  • 负责人:
  • 金额:
    $ 15.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Osteoarthritis (OA) is a prevalent degenerative joint disorder and the leading cause of disability. Presently, there are no disease-modifying osteoarthritis drugs (DMOADs). Diagnosis and pharmacological intervention occur mostly at a late stage, and current treatments offer only temporary, palliative relief before disease progression necessitates joint replacement. OA prevalence is high, at roughly 27% of those over 40 years old, and occurrence of post-traumatic OA (PTOA) is even higher (over 50%) following injury of large joints such as the knee. Given its high incidence and predictability, PTOA has potential to be treated prophylactically, a strategy that is both conducive to achieving disease-modifying outcomes and commercially/clinically feasible, provided treatment offers long-term protection. We aim to achieve persistent joint protection by permanently converting cells in situ into “on-demand” TIMP-3 “factories”, harnessing TIMP-3 as a pan-MMP inhibitor that blocks multiple aspects of OA pathology, including cartilage degradation, angiogenesis, and inflammation. “On-demand” expression of TIMP-3 will be achieved via a targeted and permanent gene insertion that hijacks the Mmp13 promoter. This approach is based on a nonviral CRISPR-based nanoparticle and activates TIMP-3 expression only when pathological (OA) stimuli are present, minimizing potential side-effects. We propose to optimize a nanoparticle formulation for non-viral gene knock-in and quantify the therapeutic efficacy of TIMP-3 knock-in in vitro and in vivo. This therapy has potential to avoid significant loss in quality of life for patients who experience a large joint injury and is uniquely enabled by our team with expertise in intracellular delivery (Duvall), polymer and nanoparticle chemistry (D’Arcy), genome editing and synthetic biology (Brunger), and PTOA biology (Hasty).
骨关节炎是一种常见的退行性关节疾病,也是致残的主要原因。目前,在那里 没有治疗骨关节炎的药物(DMOADs)。诊断和药物干预 主要是在晚期,目前的治疗方法只能在疾病进展之前提供暂时的姑息缓解 有必要进行关节置换。骨性关节炎的患病率很高,在40岁以上的人群中约占27%, 在诸如膝盖等大关节损伤后,创伤后骨性关节炎(PTOA)的发生率更高(超过50%)。vt.给出 由于其高发病率和可预测性,PTOA有可能被预防性治疗,这一战略既是 有利于实现改善疾病的结果,并在商业/临床上可行,提供治疗 提供长期保护。我们的目标是通过在原位永久转换细胞来实现持久的联合保护 将TIMP-3作为一种泛-基质金属蛋白酶抑制剂,阻断多个方面的 骨关节炎病理,包括软骨退化、血管生成和炎症。“按需”的表达方式 TIMP-3将通过劫持Mmp13启动子的靶向和永久性基因插入来实现。这 该方法基于基于CRISPR的非病毒纳米颗粒,仅在以下情况下激活TIMP-3表达 存在病理性(OA)刺激,将潜在的副作用降至最低。我们建议优化一种纳米颗粒 非病毒基因敲入模型的建立及TIMP-3体外和体内治疗效果的定量研究 活着。这种疗法有可能避免经历大关节的患者的生活质量显著下降。 我们的团队在细胞内递送(Duvall)、聚合物和 纳米粒子化学(D‘Arcy)、基因组编辑和合成生物学(Brunger)和PTOA生物学(Hats)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Matthew Brunger其他文献

Jonathan Matthew Brunger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Matthew Brunger', 18)}}的其他基金

Programmed cells for targeted articular regenerative medicine
用于靶向关节再生医学的编程细胞
  • 批准号:
    10289065
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Programmed cells for targeted articular regenerative medicine
用于靶向关节再生医学的编程细胞
  • 批准号:
    10442611
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Engineered Sense and Response Circuits for Stem Cell-Based Tissue Regeneration and Repair
用于基于干细胞的组织再生和修复的工程传感和响应电路
  • 批准号:
    9327723
  • 财政年份:
    2017
  • 资助金额:
    $ 15.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了