3D-Printed Demineralized Bone Matrix Hydrogels for Craniofacial Bone Tissue Regeneration.
3D 打印脱矿骨基质水凝胶用于颅面骨组织再生。
基本信息
- 批准号:10451625
- 负责人:
- 金额:$ 4.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2023-09-08
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAlkaline PhosphataseArchitectureAutologous TransplantationBiochemicalBiocompatible MaterialsBlood VesselsBone MatrixBone RegenerationBone ResorptionBone TissueCalciumCellsCleft PalateClinicalComplexCongenital AbnormalityCuesDentalDental ImplantationDevicesDiseaseEnsureExcisionExtracellular MatrixGeometryGoalsGrowth FactorHeightHistologyHydrogelsImplantIn VitroInfectionKineticsLeadMeasuresMembraneMesenchymal DifferentiationMesenchymal Stem CellsModelingMorbidity - disease rateNatural regenerationOperative Surgical ProceduresParietal bone structurePatientsPeriodontal DiseasesPorosityProceduresPropertyRattusResearchResearch Project GrantsRiskRoleSiteSwellingTestingTimeTissue EngineeringTissuesTooth DiseasesTooth ExtractionTranslationsTraumaWorkalveolar bonebonebone qualityclinically relevantcraniofacialcraniofacial bonecraniofacial tissuecrosslinkdemineralizationdensitydesignhydrogel scaffoldimprovedin vivoin vivo Modelin vivo regenerationinfection rateinsightmechanical propertiesmicroCTnanoparticleosteogenicpalate repairreconstructionscaffoldstandard carestem cell proliferationtissue regenerationtumor
项目摘要
Project Summary/Abstract
There is a clinical need for craniofacial bone augmentation in cases of trauma, tumor resection, congenital
malformations, or bone resorption as a result of tooth extraction or periodontal disease. Currently, bone autograft,
which is associated with increased risk of donor site morbidity and infection, and non-resorbable barrier
membranes, which required additional procedures for removal, are the standard of treatment. Therefore, the
objective of this research is to develop 3D printed scaffolds for craniofacial bone augmentation using a clinically
relevant material, demineralized bone matrix, for guided bone regeneration. The fundamental hypothesis for this
research project is that the endogenous biochemical cues for bone regeneration found within demineralized
bone matrix combined with the ability to tune scaffold microarchitecture and crosslinking via 3D printing will result
in improved bone augmentation.
Two specific aims will be investigated to accomplish the goals of this project. In the first specific aim, we
will fabricate 3D-printed scaffolds composed of demineralized bone matrix nanoparticles with varied pore sizes
and UV crosslinking times. The mechanical properties and degradation kinetics of these scaffolds will then be
characterized via compressive testing, bulk swelling, and mass loss studies. Additionally, the in vitro osteogenic
potential of the demineralized bone matrix scaffolds will be evaluated using mesenchymal stem cells and
measured by alkaline phosphatase expression, calcium content, and markers of osteogenic differentiation. The
results of this specific aim will elucidate the role of pore size and UV crosslinking in determining the osteogenic
potential of demineralized bone matrix scaffolds and determine which groups are appropriate for in vivo
translation. In the second specific aim, we will investigate the in vivo osteoinductive and osteoconductive capacity
of 3D-printed demineralized bone matrix scaffolds. The scaffolds will be implanted in a rat parietal bone
augmentation model for 12 weeks and assessed via micro-CT and histology for newly formed bone volume,
maximum bone height, and bone quality.
Upon completion of the proposed work, we will have determined the in vitro and in vivo bone regeneration
efficacy of an acellular, 3D-printed demineralized bone matrix scaffold and demonstrated tunability of scaffold
mechanical properties and degradation. Additionally, the proposed work provide new insights into rational 3D-
printed scaffold design and fabrication for craniofacial applications.
项目总结/文摘
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration.
用于远程神经刺激和运动功能恢复的自整流磁电超材料。
- DOI:10.1038/s41563-023-01680-4
- 发表时间:2024
- 期刊:
- 影响因子:41.2
- 作者:Chen,JoshuaC;Bhave,Gauri;Alrashdan,Fatima;Dhuliyawalla,Abdeali;Hogan,KatieJ;Mikos,AntoniosG;Robinson,JacobT
- 通讯作者:Robinson,JacobT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katie Hogan其他文献
Katie Hogan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katie Hogan', 18)}}的其他基金
3D-Printed Demineralized Bone Matrix Hydrogels for Craniofacial Bone Tissue Regeneration.
3D 打印脱矿骨基质水凝胶用于颅面骨组织再生。
- 批准号:
10261420 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
相似海外基金
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10220574 - 财政年份:2021
- 资助金额:
$ 4.76万 - 项目类别:
Post-Transcriptional Processing of the Small Intestinal Alkaline Phosphatase in the Postnatal Developing Pig
产后发育猪小肠碱性磷酸酶的转录后加工
- 批准号:
RGPIN-2016-05827 - 财政年份:2021
- 资助金额:
$ 4.76万 - 项目类别:
Discovery Grants Program - Individual
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10413987 - 财政年份:2021
- 资助金额:
$ 4.76万 - 项目类别:
The role of tissue nonspecific alkaline phosphatase in brain endothelial cell homeostasis
组织非特异性碱性磷酸酶在脑内皮细胞稳态中的作用
- 批准号:
10601067 - 财政年份:2021
- 资助金额:
$ 4.76万 - 项目类别:
Selective targeting of human alkaline phosphatase isozymes
选择性靶向人碱性磷酸酶同工酶
- 批准号:
10359823 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Dietary induction of intestinal alkaline phosphatase intended to detoxify endotoxin and analysis of its mechanism of action.
膳食诱导肠道碱性磷酸酶解毒内毒素及其作用机制分析。
- 批准号:
20K05936 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of alkaline phosphatase, a stem cell marker, using human deciduous dental pulp cells derived from the patient with Hypophosphatasia (HPP)
使用源自低磷酸酯酶症 (HPP) 患者的人乳牙牙髓细胞对干细胞标记物碱性磷酸酶进行功能分析
- 批准号:
20K10210 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the role of tissue non-specific alkaline phosphatase in osteogenesis for the therapy of hypophosphatasia.
了解组织非特异性碱性磷酸酶在成骨作用中的作用,以治疗低磷酸酯酶症。
- 批准号:
20K16894 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Selective targeting of human alkaline phosphatase isozymes
选择性靶向人碱性磷酸酶同工酶
- 批准号:
10117265 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Post-Transcriptional Processing of the Small Intestinal Alkaline Phosphatase in the Postnatal Developing Pig
产后发育猪小肠碱性磷酸酶的转录后加工
- 批准号:
RGPIN-2016-05827 - 财政年份:2020
- 资助金额:
$ 4.76万 - 项目类别:
Discovery Grants Program - Individual