The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
基本信息
- 批准号:10451600
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsActive SitesAddressAmino AcidsAmmoniaAtmosphereBindingBiologicalBiological AvailabilityCommunitiesComplexDevelopmentElectron TransportElectronsEnvironmentEnzymesHydrogen BondingKnowledgeLifeMolecularMolecular StructureNitrogenNitrogenaseNutrientProcessProtonsRoleSeriesSystemTestingTranslatinganalogbasebiological systemscatalystdesignmetallicitypublic health relevancerational designsmall moleculeuptake
项目摘要
Abstract:
The conversion of dinitrogen to ammonia is required for the global nitrogen cycle and is accomplished biologically
by nitrogenase enzymes. Although highly inert, dinitrogen is “fixed” by nitrogenase enzymes, and made
biologically available, allowing uptake to form key nutrients necessary to sustain life. The nitrogenase enzyme
active site features a multi-metallic core contained within a complex network of amino acids, which are necessary
to orchestrate a series of multi-proton, multi-electron transfers to small molecule substrates during the reduction
process. Although crucial for dinitrogen reduction, the precise molecular role that these secondary interactions
serve to promote reduction is not well known. More explicitly, the scientific community does not precisely know
where and how substrates bind, how electrons are delivered, and products released. Thus, there is an inherent
gap in our knowledge underlying key contributors to nitrogenase reactivity. To address this gap, this proposal
targets the design and study of small molecular constructs that contain highly directed and variable secondary
coordination sphere interactions. We will use a rational design approach to prepare synthetic analogues that
feature modifiable appended functionality (hydrogen-bond donors, Lewis acids/bases) in the secondary
coordination sphere environment to evaluate cooperative reactivity. We will use these molecular structures to
test key mechanistic hypotheses regarding the molecular-level reduction of substrates using secondary-sphere
cooperativity. We propose that the same type of interactions evaluated in our synthetic systems that promote
nitrogenase-type activity can be, by extension, adapted to describe biological systems. The knowledge we
acquire will provide key needed contributions to mechanistic studies of nitrogenase function and also synthetic
nitrogenases. Substrate activation promoted by highly directed secondary sphere interactions is a broad theme
among many biocatalytic cycles, and thus, we envision that the results of our studies will have broad utility to
elucidate meaningful contributors to enzymatic reactivity.
摘要:
氮素转化为氨是全球氮循环所必需的,它是通过生物方式完成的。
通过固氮酶。虽然高度惰性,但氮素被固氮酶“固定”,并使
生物可利用的,允许吸收形成维持生命所需的关键营养物质。固氮酶
活性中心具有一个包含在复杂的氨基酸网络中的多金属核心,这是必需的
在还原过程中协调一系列多质子、多电子转移到小分子底物
进程。尽管对氮的还原至关重要,但这些次级相互作用所起的确切分子作用
起到促进减量的作用还不为人所知。更明确地说,科学界并不确切地知道
底物在哪里结合以及如何结合,电子是如何传递的,以及产品是如何释放的。因此,有一种内在的
我们对固氮酶活性的关键贡献者的认识存在差距。为了解决这一差距,这项提议
目标是设计和研究含有高度定向和可变二级结构的小分子结构
配位球相互作用。我们将使用合理的设计方法来准备合成类似物
特征可修改的附加官能团(氢键供体、Lewis酸/碱)
评价协同反应性的配位球环境。我们将利用这些分子结构
利用二次球测试关于底物分子水平还原的关键机械假说
协作性。我们认为,在我们的合成系统中评估的相同类型的交互作用促进了
通过引申,固氮酶类型的活性可以适用于描述生物系统。我们所了解的知识
Acquire将为固氮酶功能的机制研究和合成提供所需的关键贡献
固氮酶。由高度定向的次级球体相互作用促进的底物活化是一个广泛的主题
在许多生物催化循环中,因此,我们预计我们的研究结果将对
阐明对酶反应有意义的贡献者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Kolnik Szymczak其他文献
Nathaniel Kolnik Szymczak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel Kolnik Szymczak', 18)}}的其他基金
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10246256 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
10670988 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
The Role of Secondary Interactions Relevant to Biological Reductions of Small Molecules
与小分子生物还原相关的次级相互作用的作用
- 批准号:
8885996 - 财政年份:2015
- 资助金额:
$ 37.37万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 37.37万 - 项目类别:
Discovery Grants Program - Individual