Development and Implementation of a Health e-Librarian with Personalized Recommender (HELPeR)
具有个性化推荐器 (HELPeR) 的健康电子图书馆员的开发和实施
基本信息
- 批准号:10451704
- 负责人:
- 金额:$ 32.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvocacyAlgorithmsCancer PatientCharacteristicsChronicChronic DiseaseClinicalCommunity HealthComplexDecision MakingDevelopmentDiseaseEducational workshopFeelingFocus GroupsGoalsHealthHealth StatusHealthcareHybridsIndividualInfrastructureInstructionInternetKnowledgeLaboratoriesLibrariansLibrariesLinkMalignant NeoplasmsMalignant neoplasm of ovaryManualsMisinformationNatureObservational StudyOutcomeOvarianPamphletsPatientsPlayPopulationPrognosisRecommendationRecording of previous eventsReportingResourcesRiskRoleSamplingSelf EfficacySelf ManagementSeriesSourceStereotypingSupportive careSystemTimeUpdateWomanWorkadvocacy organizationsbasedesigndigitaleHealthexpectationexperiencehealth literacyimprovedindividual patientinnovationinterestpatient orientedpeerpersonalized medicinepreferenceprototyperecruittrustworthinesstumorusabilityvirtual healthweb site
项目摘要
Abstract
As patients increasingly play more active roles in their health care, the Internet has become a prominent source
of health information to guide their decision-making and self-management activities. Despite the great potential
of the Internet, many patients who sought health information on the web reported feeling overwhelmed by the
vast amount of unfiltered information and unqualified to determine the quality, veracity, and relevance of the
information. Ninety-one percent of online health information seekers indicate they either need or want
navigational support in locating appropriate health information that adapts to their changing needs and
knowledge across the disease trajectory. However, current strategies to improve patients’ ability to find reliable
and relevant information online are limited by static, time and resource intensity, and not personalized.
Recommender systems, information filtering systems that integrate user profiles and online activity (e.g., search
history), can efficiently determine what information is the most relevant to an individual user, but such systems
have not been used to provide health information to patients. The overall goal of this proposal is to build and
implement a “Health E-Librarian with Personalized Recommendations (HELPeR)” - a personalized information
access system with a hybrid recommender engine that adapts to different aspects of the patient. This would be
the first implementation of a patient-centered system that can serve as a virtual health librarian. The HELPeR
recommender engine is innovative in its capacity to integrate three dimensions of an individual patient (i.e.,
information needs based on the user’s profile, the user’s unique expressed information interests, and the level
of user’s disease-related knowledge) to direct patients to highly personalized sets of information, that are high
quality, trustworthy, and appropriate for each patient’s knowledge level. We have selected ovarian cancer (OvCa)
as our initial population as it represents a complex disease with multiple tumor types and a range of prognoses,
requiring personalized treatments and supportive care needs that evolve over time. HELPeR will be housed on
a standalone website linked to the online health community (OHC) of the National Ovarian Cancer Coalition, a
national OvCa advocacy organization. In order to attain our goal of implementing HELPeR, the aims of this
proposal are: (1) Define user needs, preferences, and expectations for personalized health information, (2)
Develop and evaluate the HELPeR system that is able to adapt to three types of individual user characteristics
across the disease trajectory evolving information needs, personal information preferences, and progressive
cancer-related knowledge, and (3) Conduct a field trial with OvCa patients to determine the acceptability and
value of HELPeR in a real-world setting. HELPeR can be easily adapted to filter information for other cancers
and chronic conditions, making it highly transferable to any chronic disease where patients repeatedly seek
online information to better manage their condition.
抽象的
随着患者在医疗保健中越来越活跃的角色,互联网已成为重要的来源
健康信息指导他们的决策和自我管理活动。尽管潜力很大
在互联网上,许多在网络上感知健康信息的患者报告说
大量未经过滤的信息和不合格的信息来确定质量,真实性和相关性
信息。百分之九十一的在线健康信息寻求者表示他们需要或想要
导航支持,以找到适应其不断变化的需求和的适当健康信息和
跨疾病轨迹的知识。但是,目前提高患者找到可靠能力的策略
在线和相关信息受到静态,时间和资源强度的限制,而不是个性化的。
推荐系统,整合用户配置文件和在线活动的信息过滤系统(例如,搜索
历史),可以有效地确定哪种信息与单个用户最相关,但是此类系统
尚未用于向患者提供健康信息。该建议的总体目标是建立和
实施“带有个性化建议的健康电子文献(助手)” - 个性化信息
带有混合推荐引擎的访问系统,可适应患者的不同方面。这是
以患者为中心的系统的首次实施,该系统可以用作虚拟健康图书馆员。助手
推荐发动机具有整合单个患者的三个维度的创新能力(即
根据用户的个人资料,用户独特的表达信息兴趣和级别的信息需求
用户与疾病有关的知识)指导患者进入高度个性化的信息集,这些信息很高
质量,值得信赖,适合每个患者的知识水平。我们选择了卵巢癌(OVCA)
作为我们的初始人群,它代表了一种复杂的疾病,具有多种肿瘤类型和一系列预后,
需要个性化治疗和随着时间的流逝而发展的支持性护理需求。助手将安置在
与国家卵巢癌联盟的在线健康社区(OHC)相关的独立网站,
国家OVCA倡导组织。为了实现我们实施助手的目标,目的
建议是:(1)定义用户需求,偏好和对个性化健康信息的期望,(2)
开发和评估能够适应三种单个用户特征的辅助系统
在整个疾病轨迹中不断发展的信息需求,个人信息偏好和进步
与癌症相关的知识,(3)与OVCA患者进行现场试验,以确定可接受性和
在现实世界中的助手的值。助手可以很容易地适应其他癌症的过滤信息
和慢性病,使其高度转移到患者反复寻求的任何慢性疾病中
在线信息以更好地管理其状况。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Resource-Sharing Behaviors for Finding Relevant Health Resources: Analysis of an Online Ovarian Cancer Community.
- DOI:10.2196/33110
- 发表时间:2022-04-12
- 期刊:
- 影响因子:2.8
- 作者:Thaker, Khushboo;Chi, Yu;Birkhoff, Susan;He, Daqing;Donovan, Heidi;Rosenblum, Leah;Brusilovsky, Peter;Hui, Vivian;Lee, Young Ji
- 通讯作者:Lee, Young Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daqing He其他文献
Daqing He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daqing He', 18)}}的其他基金
Tailoring Responses to ADRD Caregivers' InfOrmation wants (TRACO) through human-machine collaboration
通过人机协作定制响应 ADRD 护理人员的信息需求 (TRACO)
- 批准号:
10670479 - 财政年份:2022
- 资助金额:
$ 32.27万 - 项目类别:
Development and Implementation of a Health e-Librarian with Personalized Recommender (HELPeR)
具有个性化推荐器 (HELPeR) 的健康电子图书馆员的开发和实施
- 批准号:
10219361 - 财政年份:2019
- 资助金额:
$ 32.27万 - 项目类别:
相似国自然基金
基于倡导促动理论的老年人多重慢病健康管理策略研究:理论模型、行为模式与管理路径
- 批准号:71874104
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Implementing HIV/Cervical Cancer Prevention CASCADE Clinical Trials in Zimbabwe (ZIM-CASCADE)
在津巴布韦实施艾滋病毒/宫颈癌预防 CASCADE 临床试验 (ZIM-CASCADE)
- 批准号:
10758129 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Promoting Diversity and Sustainability in the NIDDK-Supported Research Workforce through Mentoring Early Career Investigators: Focus on Health Equity
通过指导早期职业研究人员促进 NIDDK 支持的研究队伍的多样性和可持续性:关注健康公平
- 批准号:
10797832 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
University of Colorado Rocky Mountain NeuroNEXT (UNCOMON) Clinical Research Consortium.
科罗拉多大学落基山 NeuroNEXT (UNCOMON) 临床研究联盟。
- 批准号:
10744629 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
mHealth Tympanometer: A Digital Innovation to Address Preventable Childhood Hearing Loss in Low- and Middle-Income Countries
mHealth 鼓室压力计:解决中低收入国家可预防的儿童听力损失问题的数字创新
- 批准号:
10468986 - 财政年份:2022
- 资助金额:
$ 32.27万 - 项目类别:
Developing and Evaluating a Surveillance System for Alzheimer's Dementia In the United States
在美国开发和评估阿尔茨海默氏痴呆症监测系统
- 批准号:
10369902 - 财政年份:2022
- 资助金额:
$ 32.27万 - 项目类别: