Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistance Family
多药耐药小家族的变构和分子识别机制
基本信息
- 批准号:10451577
- 负责人:
- 金额:$ 45.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsActive Biological TransportAntibiotic ResistanceAntibioticsBacteriaBacterial Drug ResistanceBindingBiochemicalBiologicalBiological AssayChargeChemical StructureChemistryClinicCollaborationsComputing MethodologiesDataDefense MechanismsDevelopmentDrug ModelingsDrug TransportDrug resistanceEffectivenessFamilyFoundationsGoalsGrantKnowledgeKnowledge DiscoveryMediatingMembrane ProteinsMethodsModelingMolecularMolecular ConformationMulti-Drug ResistanceMutagenesisNatureOrganismOutcomes ResearchPathogenicityPharmaceutical PreparationsPhasePhenotypePlant alkaloidPlayPoisonPositioning AttributePropertyProteinsProtonsPumpRepressionResearchRoleShapesSideSourceSpecificityStructureSubstrate SpecificitySystemTestingTransport ProcessWorkbasebiophysical analysisbiophysical techniquescomparativecomputational platformdeprotonationdesigndrug discoveryefflux pumpguanidiniuminhibitorinsightmolecular recognitionmulti drug transportermultiple drug usemutantnovelpH gradientpathogenic bacteriaresponsetheoriestool
项目摘要
Project Summary
Bacterial drug resistance is a worldwide problem that limits the effectiveness of antibiotics in the clinic. While
there are several molecular mechanisms that contribute to drug resistant phenotypes, it is well established that
efflux pumps play a prominent role in pathogenic bacteria. Indeed, multidrug transporters constitute a
fundamental mechanism used by bacteria to survive in the presence of toxic compounds by binding and
transporting a broad array of structurally diverse compounds. The long-term goals of this project are to discover
novel mechanisms used by multidrug transporters and to harness this knowledge to predict and control function.
In this competitive renewal, we are now poised to tackle the major challenge in the field of understanding how
efflux pumps achieve broad drug specificity required for conferring multidrug resistance. To accomplish this goal,
we need to establish a comprehensive understanding of the catalytic cycle for an efflux pump system amenable
to detailed biological, biochemical and biophysical studies. For this reason, our proposal will use EmrE from the
SMR family as the model drug transporter since it embodies the minimal level of complexity while retaining the
key features shared among all secondary active efflux pumps. Aim 1 will test an occluded-state theory that we
hypothesize is widely used by efflux pumps for drug binding. Aim 2 will seek to define the molecular basis for
substrate-induced activation of dynamics versus inhibitor-induced repression of dynamics, as well as
development of a computational platform for predicting binding and transport. Finally, Aim 3 will set out to
determine the molecular basis of binding specificity versus promiscuity through a comparative analysis of two
subfamilies within the SMR family that have markedly different specificity profiles. Each of these Aims works
synergistically toward our long-term goal of articulating novel transport mechanisms and applying our knowledge
to develop models for making predictions about function. A major strength of this project is the integrated nature
of the approach which utilizes significant collaboration and a combination of biological, biophysical, and
computational methods aimed at unveiling general transport mechanisms designed by nature and shared among
other multidrug efflux pumps. The outcomes of this research will make a significant impact in understanding
efflux-mediated multidrug resistance, and the approaches and methods developed will be translatable to
knowledge discovery in other efflux systems.
项目摘要
细菌耐药性是一个世界性的问题,限制了抗生素在临床上的有效性。而
有几种分子机制导致耐药表型,已经确定,
外排泵在病原菌中起着重要作用。事实上,多药转运蛋白构成了
细菌在有毒化合物存在下生存的基本机制,
运输大量结构不同的化合物。这个项目的长期目标是发现
多药转运蛋白使用的新机制,并利用这些知识来预测和控制功能。
在这一竞争性的更新中,我们现在准备好应对理解如何实现这一领域的主要挑战。
外排泵实现了赋予多药耐药性所需的广泛的药物特异性。为了实现这一目标,
我们需要建立一个全面的了解催化循环的外排泵系统的责任
详细的生物学、生物化学和生物物理学研究。因此,我们的建议将使用来自
SMR家族作为模型药物转运蛋白,因为它体现了最低水平的复杂性,同时保留了
所有二级主动外排泵共有的关键特征。目标1将测试一个封闭状态理论,我们
假设被外排泵广泛用于药物结合。目标2将寻求定义以下的分子基础:
底物诱导的动力学激活与底物诱导的动力学抑制,以及
开发用于预测结合和运输的计算平台。最后,目标3将着手
通过比较分析两种结合特异性与滥交的分子基础,
SMR家族中的亚家族具有显著不同的特异性谱。每一个目标都有效
协同实现我们的长期目标,阐明新的运输机制和应用我们的知识
来开发预测功能的模型。该项目的一个主要优势是综合性
的方法,利用重要的合作和生物,生物物理,
计算方法,旨在揭示一般运输机制设计的性质和共享之间
其他多药外排泵。这项研究的结果将对理解
外排介导的多药耐药,开发的方法和途径将可转化为
知识发现在其他外排系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel J. Traaseth其他文献
Solution and Solid-State NMR Analysis of Phosphorylated and Pseudo-Phosphorylated Phospholamban
- DOI:
10.1016/j.bpj.2008.12.2208 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Raffaello Verardi;Nathaniel J. Traaseth;Martin Gustavsson;Kim H. Ha;Gianluigi Veglia - 通讯作者:
Gianluigi Veglia
Structure of the Phospholamban/Ca<sup>2+</sup>-ATPase Complex in Lipid Bilayers by Hybrid Solid-State NMR Methods
- DOI:
10.1016/j.bpj.2011.11.2313 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Martin Gustavsson;Raffaello Verardi;Nathaniel J. Traaseth;Gianluigi Veglia - 通讯作者:
Gianluigi Veglia
Hybrid Solution and Solid-State NMR Analysis of SERCA/Phospholamban Interactions in lipid membranes: From Structural Dynamics to Function
- DOI:
10.1016/j.bpj.2008.12.2209 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Gianluigi Veglia;Nathaniel J. Traaseth;Raffaello Verardi;Lei Shi;Kim Ha - 通讯作者:
Kim Ha
A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM
一种与使用冷冻电镜解析处于多种构象的小 MFS 转运蛋白结构兼容的基准辅助策略
- DOI:
10.1038/s41467-024-54986-5 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:15.700
- 作者:
Pujun Xie;Yan Li;Gaëlle Lamon;Huihui Kuang;Da-Neng Wang;Nathaniel J. Traaseth - 通讯作者:
Nathaniel J. Traaseth
Towards the Development of Rationally Designed Phospholamban Mutants For Treatment of Heart Failure
- DOI:
10.1016/j.bpj.2009.12.270 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Kim N. Ha;Martin Gustavsson;Raffaello Verardi;Naomi Menard;Nathaniel J. Traaseth;Gianluigi Veglia - 通讯作者:
Gianluigi Veglia
Nathaniel J. Traaseth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel J. Traaseth', 18)}}的其他基金
Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistan
小型多药耐药性的变构和分子识别机制
- 批准号:
8761801 - 财政年份:2014
- 资助金额:
$ 45.36万 - 项目类别:
Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistance Family
多药耐药小家族的变构和分子识别机制
- 批准号:
10224028 - 财政年份:2014
- 资助金额:
$ 45.36万 - 项目类别:
Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistan
小型多药耐药性的变构和分子识别机制
- 批准号:
8882245 - 财政年份:2014
- 资助金额:
$ 45.36万 - 项目类别:
Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistan
小型多药耐药性的变构和分子识别机制
- 批准号:
9096695 - 财政年份:2014
- 资助金额:
$ 45.36万 - 项目类别:
Mechanisms of Allostery and Molecular Recognition in the Small Multidrug Resistance Family
多药耐药小家族的变构和分子识别机制
- 批准号:
10666510 - 财政年份:2014
- 资助金额:
$ 45.36万 - 项目类别:
Structural Topology of a Small Multidrug Resistant Efflux Pump
小型多药耐药外排泵的结构拓扑
- 批准号:
8208161 - 财政年份:2011
- 资助金额:
$ 45.36万 - 项目类别:
Structural Topology of a Small Multidrug Resistant Efflux Pump
小型多药耐药外排泵的结构拓扑
- 批准号:
7893390 - 财政年份:2011
- 资助金额:
$ 45.36万 - 项目类别:














{{item.name}}会员




