Development of a fluidic chip model of PKD to elucidate cystogenic signals using kidney organoids
开发 PKD 流体芯片模型,利用肾脏类器官阐明囊原信号
基本信息
- 批准号:10450421
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAnimalsAutosomal Dominant Polycystic KidneyAutosomal Recessive Polycystic KidneyBiosensorCDH1 geneCell LineCellsChemicalsCiliaClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesCystDataDevelopmentDilatation - actionDiseaseDistalEnd stage renal failureEnzyme-Linked Immunosorbent AssayExhibitsExperimental ModelsFDA approvedFollow-Up StudiesForskolinGenerationsGenesGeneticHumanIn VitroKidneyKidney DiseasesKnock-outLentivirus VectorLesionLiquid substanceMechanical StressMechanicsMediatingModelingMovementMusNephronsOrganoidsPathogenesisPathogenicityPatient CarePatientsPersonsPharmaceutical PreparationsPhenotypePhysiologicalPolycystic Kidney DiseasesReporterReportingResearchSSTR3 geneSamplingSignal PathwaySignal TransductionSignaling MoleculeStressStretchingStructureSystemTechnologyTranslatingTransplantationTubular formationUnited States National Institutes of HealthVascularizationWorkbaseciliopathyclinically relevantexperimental studyfluid flowgenome editinghuman pluripotent stem cellinsightintravital imagingmutantnew therapeutic targetnovelphysiologic modelreal-time imagesshear stresstherapeutic candidatetherapeutic developmenttolvaptantooltranscriptomics
项目摘要
Project Summary
Kidney organoids derived from human pluripotent stem cells (hPSCs) can be a novel tool to study kidney
diseases. Polycystic kidney disease (PKD) is the most common genetic kidney disease which results in
end-stage kidney disease, afflicting over 12 million people worldwide. Animal and static kidney organoid models
have been developed to understand the pathomechanisms of cystogenesis for therapeutic development.
However, renal phenotypes in ARPKD mice are often absent, and when present, it is a mild lesion that typically
involves proximal tubules rather than distal nephrons. In contrast, human kidney organoid models could provide
new insights into PKD pathogenesis, yet current ARPKD models are developed with a chemical inducer,
forskolin, in static culture, exhibiting proximal tubular cysts.
Recently, our collaborative team has developed a new model of organoid-on-the-chip by which fluidic
shear stress can be applied to whole kidney organoids. Interestingly, our preliminary results using the fluidic
chips showed clinically relevant phenotypes with distal nephron dilatation in PKHD1-/- organoids cultured under
flow. These novel tools marrying kidney organoid, kidney-on-a-chip, and CRISPR genome editing might offer
new opportunities to efficiently explore the signal pathways that are involved in cyst formation and signal
molecules that can be new therapeutic targets for ARPKD patients.
To develop a physiologic model of ARPKD, in Specific Aim 1, we will generate kidney organoids from
PKHD1-mutant hPSCs. Then we will optimize culture conditions on millifluidic chips to apply shear stress to
kidney organoids in vitro. Flow-induced mechanical stress including ciliary stress and cellular stretching will be
evaluated by ELISA, biosensors, and transcriptomics. We will validate the fluidic ARPKD model by comparing
cystic phenotypes to human ARPKD kidney samples. For mechanistic studies, in Specific Aim 2, we will
generate additional tools: 1. primary cilia knock-out lines by CRISPR genome editing in PKHD1-/- hPSCs, and 2.
primary cilia reporter lines using human SSTR3-GFP. Cilia knock-out lines will enable mechanistic studies
involving ciliary stress-mediated pathogenic signals in ARPKD kidney and other organoids. The reporter lines
will enable real-time imaging of primary cilia movement in varied experimental settings including
organoid-on-chip and intravital imaging in transplanted animals.
Our proposed work will generate novel in vitro tools for PKD and ciliopathy research communities to
investigate pathomechanisms of cystogenesis induced by ciliary stress in kidney and other organoids.
Transcriptomic data from perfused kidney organoids will also provide mechanistic insights into cystogenesis in
ARPKD. All tools and data developed by this study will be disseminated through NIH PKD and RBK
consortiums to facilitate therapeutic development for PKD patients.
项目摘要
人多能干细胞(HPSCs)来源的肾脏器官可作为肾脏研究的新工具
疾病。多囊肾病(PKD)是最常见的遗传性肾脏疾病,可导致
终末期肾病,困扰着全世界1200多万人。动物和静态肾脏器官模型
已被用来了解膀胱发生的病理机制,以用于治疗开发。
然而,ARPKD小鼠的肾脏表型通常是缺失的,当存在时,这是一种轻微的病变,通常
累及近端肾小管而不是远端肾单位。相比之下,人类肾脏器官模型可以提供
对PKD发病机制的新见解,但目前的ARPKD模型是用化学诱导剂开发的,
Forskolin,在静态培养中,表现为近端管状囊肿。
最近,我们合作的团队开发了一种新的芯片上有机化合物模型,通过这种模型,流体
切应力可以应用于整个肾脏器官。有趣的是,我们的初步结果使用了流体力学
在体外培养的PKHD1-/-类器官中,CHIP显示出与远端肾单位扩张相关的临床表型
流。这些结合肾脏器官、芯片上肾脏和CRISPR基因组编辑的新工具可能会提供
有效探索与包囊形成和信号传导有关的信号通路的新机会
可以成为ARPKD患者新的治疗靶点的分子。
为了建立ARPKD的生理模型,在特定的目标1中,我们将从
PKHD1-突变体hPSCs。然后,我们将优化微流控芯片的培养条件,以施加剪应力
肾脏有机化合物的体外实验。流体诱导的机械应力,包括纤毛应力和细胞拉伸
通过酶联免疫吸附试验、生物传感器和转录组分学进行评估。我们将通过比较来验证流体ARPKD模型
人类ARPKD肾脏样本的囊性表型。对于机械论研究,在具体目标2中,我们将
生成其他工具:1.在PKHD1-/-hPSCs中通过CRISPR基因组编辑获得原代纤毛基因敲除系,以及2。
利用人SSTR3-GFP构建原代纤毛报告系。纤毛敲除线将使机械学研究成为可能
涉及ARPKD肾脏和其他器官中纤毛应激介导的致病信号。记者们排成一行
将能够在不同的实验设置中实时成像初级纤毛运动,包括
移植动物的芯片上有机物和活体成像。
我们提议的工作将为PKD和纤毛疾病研究社区产生新的体外工具
探讨纤毛应激在肾脏和其他脏器中诱发囊变的病理机制。
来自灌流的肾脏器官的转录数据也将提供对膀胱发生的机械性见解。
ARPKD.这项研究开发的所有工具和数据都将通过NIH PKD和RBK传播
促进PKD患者的治疗发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryuji Morizane其他文献
Ryuji Morizane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 21.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists