Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
基本信息
- 批准号:10449787
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-18 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAgreementAlgorithmic SoftwareAlgorithmsArchitectureAreaArtificial IntelligenceBarrett EsophagusBioinformaticsBiopsyBlood VesselsCalibrationCancer DetectionClinicalClinical TrialsCommunitiesComputer AssistedComputer-Assisted DiagnosisDataDetectionDevelopmentDevelopment PlansDevicesDiagnosisDiagnosticDiscriminationDysplasiaEarly DiagnosisEarly treatmentEndoscopesEndoscopyEpidemiologyEsophageal AdenocarcinomaEsophageal NeoplasmsEsophageal mucous membraneEsophagusEthnic OriginEvaluationFundingFutureGoalsGoldHigh grade dysplasiaHistopathologyImageImaging technologyIncidenceInterviewK-Series Research Career ProgramsLearningLengthLesionLife StyleLightLongitudinal StudiesMachine LearningMalignant neoplasm of esophagusMalignant neoplasm of gastrointestinal tractMeasuresMentorsMetaplasiaMethodologyMicroscopicModelingNeoplasmsNuclearObesityOptical BiopsyPatientsPerformancePositioning AttributePublic HealthQualitative ResearchQuality-Adjusted Life YearsROC CurveRaceRecording of previous eventsResearchResearch PersonnelResearch TrainingResolutionResource-limited settingRiskRisk AssessmentRisk FactorsScreening for cancerSensitivity and SpecificitySiteSmokingStructureTablet ComputerTechniquesTechnologyTimeUnited StatesValidationWorkartificial intelligence algorithmautomated algorithmbasecancer diagnosiscareer developmentcellular imagingclassification algorithmclinical riskclinically relevantcommunity settingcostcost effectivecurative treatmentsdiagnostic accuracydiagnostic toolexperienceindexingmenmicroendoscopemicroendoscopyneoplasticnew technologynovelportabilitypreventprospectiverecruitresearch and developmentrisk prediction modelrisk stratificationsextechnology developmentusability
项目摘要
Project Summary/Abstract
Endoscopic surveillance of Barrett’s esophagus (BE) is recommended for early diagnosis and treatment of
neoplasia (i.e., esophageal adenocarcinoma and high-grade dysplasia). However, neoplasia is difficult to detect
on regular white-light endoscopy (WLE; sensitivity 64%), and 26% of neoplasia is missed with WLE alone. On
the other hand, confocal high-resolution microendoscopy (cHRME) is a low-cost, portable, reusable imaging
technology that provides microscopic “optical biopsy” images of the esophageal mucosa at the time of endoscopy
and has sensitivity of neoplasia detection upwards of 89% in the hands of experts. Despite these advantages,
the dissemination of cHRME is limited by the availability of expert microendoscopists capable of interpreting
these histopathology-like images. Artificial intelligence algorithms that automate interpretation of cHRME images
could bridge this gap by providing a real-time computer-assisted diagnosis to users in community-based BE
surveillance settings and reducing the need for expert review.
My objective is to develop and validate an automated software algorithm for real-time BE neoplasia detection
using cHRME. Furthermore, I will optimize the software algorithm by incorporating traditional clinical risk factors
for comprehensive risk stratification. Thus, I propose the following Specific Aims: Aim 1: Technology
Development: To develop a software algorithm that automates interpretation of cHRME images in BE neoplasia
detection. Aim 2. Technology Evaluation and Optimization: (a) To validate the cHRME automated software
algorithm for real-time neoplasia detection in BE; (b) To optimize the automated software algorithm by integrating
demographic, lifestyle, and clinical risk factors for comprehensive BE neoplasia detection. Aim 3. Technology
Acceptability: (a) To evaluate the acceptability and experiences of endoscopists using computer-assisted
diagnosis; (b) To assess feasibility of the automated software algorithm in clinical BE neoplasia detection.
The overarching goal of this proposal is to develop artificial intelligence algorithms that facilitate dissemination
of novel, low-cost technologies into community settings for rapid, real-time, accurate neoplasia detection. Future
longitudinal studies will focus on validation of comprehensive risk models that use macroscopic and microscopic
metrics to predict future neoplasia risk in BE patients undergoing surveillance endoscopy.
My long-term goal is to become an independently funded investigator in novel techniques for early
gastrointestinal cancer detection. I have assembled an experienced mentoring committee comprised of senior,
funded investigators with expertise in technology development, artificial intelligence algorithms, epidemiology,
bioinformatics, and qualitative research. My career development plan includes additional formal research training
in artificial intelligence methodology, machine learning, and clinical trials. With the support and protected time
provided by the K23 Career Development Award, I will be able to complete my proposed research and career
development goals and generate preliminary data to be competitive for independent research funding.
项目摘要/摘要
建议对Barrett‘s食道(BE)进行内窥镜监测,以便早期诊断和治疗
肿瘤(即食管腺癌和高度不典型增生)。然而,肿瘤很难被发现。
常规白光内窥镜检查(WLE;敏感性%),单独使用WLE可漏诊26%的肿瘤。在……上面
另一方面,共焦高分辨率显微内窥镜(CHRME)是一种低成本、便携式、可重复使用的成像技术
在内窥镜检查时提供食道粘膜的显微“光学活组织检查”图像的技术
并在专家手中具有89%以上的肿瘤检测灵敏度。尽管有这些优势,
CHRME的传播受限于是否有专业的显微内窥镜医师能够解释
这些类似组织病理学的图像。自动解释cHRME图像的人工智能算法
可以通过在基于社区的BE中向用户提供实时计算机辅助诊断来弥补这一差距
监测环境和减少对专家审查的需要。
我的目标是开发和验证一个自动化的软件算法,用于实时检测BE肿瘤
使用cHRME。此外,我将通过纳入传统的临床风险因素来优化软件算法
进行全面的风险分层。因此,我提出以下具体目标:目标1:技术
发展:开发一种软件算法,自动解释BE瘤的cHRME图像
侦测。目标2.技术评价和优化:(A)验证cHRME自动化软件
BE中肿瘤的实时检测算法;(B)通过集成优化自动化软件算法
人口学、生活方式和临床危险因素对BE瘤的全面检测。目标3.技术
可接受性:(A)使用计算机辅助评估内窥镜医师的可接受性和经验
(B)评估自动化软件算法在临床BE肿瘤检测中的可行性。
这项提议的首要目标是开发促进传播的人工智能算法
将新的、低成本的技术应用到社区环境中,以实现快速、实时、准确的肿瘤检测。未来
纵向研究将侧重于验证使用宏观和微观的综合风险模型
在接受监视内窥镜检查的BE患者中预测未来肿瘤风险的指标。
我的长期目标是成为一名独立资助的研究人员,研究早期的新技术
胃肠道癌症检测。我组建了一个经验丰富的指导委员会,由资深的,
资助拥有技术开发、人工智能算法、流行病学专业知识的调查人员,
生物信息学和定性研究。我的职业发展计划包括额外的正式研究培训
人工智能方法论、机器学习和临床试验。有了支持和保护时间
由K23职业发展奖提供,我将能够完成我提出的研究和职业生涯
制定发展目标,并生成初步数据,以便在独立研究资金方面具有竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi Chang Tan其他文献
Mimi Chang Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mimi Chang Tan', 18)}}的其他基金
Development and Validation of an Automated Algorithm for Real-time Detection of Neoplasia in Barrett's Esophagus using a Low-cost, Portable Microendoscope
使用低成本便携式显微内窥镜实时检测巴雷特食管肿瘤的自动算法的开发和验证
- 批准号:
10610492 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Standard Grant