Developing cell-penetrating miniproteins as a new class of therapeutics
开发细胞穿透微型蛋白作为一类新型疗法
基本信息
- 批准号:10454275
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino AcidsAreaAutoimmunityBinding ProteinsBiological AssayBiologyCell LineCell membraneCellsCellular MembraneChargeClinicalCytolysisCytosolDataDevelopmentDiseaseDoseDrug TargetingEndosomesEngineeringEnsureEscherichia coliFutureGoalsHandHumanHydrophobicityIncubatedIndividualLearningLengthLibrariesLinkLysosomesMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMedicineMethodsModelingPeptidesPharmaceutical PreparationsPlasma CellsPropertyProtein EngineeringProteinsProteomicsRecombinantsRecoveryRiskSamplingStructureStructure-Activity RelationshipSurfaceTechnologyTestingTherapeuticUpdateUrsidae FamilyValidationbasecourse developmentdesigndrug developmentimprovedinsightiterative designlarge scale datamachine learning predictionmultiplex assaynanomolarnervous system disordernew therapeutic targetnovel drug classnovel strategiesnovel therapeutic interventionnovel therapeuticspeptide drugpre-clinicalpredictive modelingprotein protein interactionsmall moleculesuccesssupervised learningtherapeutic protein
项目摘要
Project Summary
Current protein therapeutics have a major limitation: they generally cannot cross the cellular membrane or
interact with cytosolic targets. The ability to design protein therapeutics that enter the cell cytosol would enable
new therapeutic strategies across many disease areas, including cancer, autoimmunity, and neurological
disease. Therapeutic “miniproteins” (30-60 residues in length) have the potential to address this challenge, and
several miniproteins capable of efficiently reaching the cell cytosol have recently been identified. However, we
lack a general understanding of the “design rules” for cell-penetrating miniproteins, limiting the development of
this class of molecules. Furthermore, current approaches to measure cytosolic delivery require measuring each
protein individually, which is slow and labor intensive. This makes it impossible to test large numbers of
miniproteins to develop a robust, quantitative understanding of the determinants of cytosolic delivery.
In this exploratory project, we will develop a new approach to measure delivery for each different protein in a
large mixed pool, using targeted mass spectrometry to individually identify each miniprotein sequence. In our
approach, a soluble mixed pool containing thousands of designed miniprotein sequences is incubated with cells,
and miniproteins that enter those cells are captured by a cytosolic target. Miniproteins captured by the target are
then purified out of the cellular contents and identified and quantified using targeted proteomics. The amount of
each protein in the captured sample (relative to the starting sample) will provide a quantitative measure of
delivery efficiency. This approach is unprecedented, and we will test and optimize this approach using different
positive and negative control miniproteins, different library sizes, and different cell lines.
With this method in hand, we will use approaches we previously pioneered to computationally design thousands
of candidate cell-penetrating miniproteins with intentionally diverse sequence and structural properties. We will
then quantify cytosolic delivery for these new proteins using our new high-throughput approach, creating
unprecedented large-scale data on delivery efficiency. We will then use these data to build machine learning
models that predict miniprotein delivery based on sequence and structural properties. Finally, we will repeatedly
iterate, designing new miniprotein libraries based on our predictive models of delivery, testing these designs
using our high-throughput experimental approach, and further updating our models. This iterative design-test-
learn approach will build a robust, predictive understanding of the determinants of delivery. Ultimately, the ability
to design cell-penetrating miniproteins will unlock a wide range of new therapeutic targets inside the cell.
项目摘要
目前的蛋白质治疗剂具有一个主要的局限性:它们通常不能穿过细胞膜,
与胞质靶相互作用。设计进入细胞胞质溶胶的蛋白质治疗剂的能力将使
新的治疗策略跨越许多疾病领域,包括癌症、自身免疫和神经系统疾病。
疾病治疗性“微蛋白”(长度为30-60个残基)具有解决这一挑战的潜力,
最近已经鉴定了几种能够有效到达细胞胞质溶胶的微蛋白。但我们
缺乏对细胞穿透微蛋白的“设计规则”的一般理解,限制了
这类分子。此外,目前测量胞质递送的方法需要测量每个细胞的浓度。
蛋白质,这是缓慢和劳动密集型。这使得测试大量的
miniproteins开发一个强大的,定量的胞质传递的决定因素的理解。
在这个探索性的项目中,我们将开发一种新的方法来测量每种不同蛋白质的递送,
大混合池,使用靶向质谱法单独鉴定每个微蛋白序列。在我们
方法,将含有数千个设计的微蛋白序列的可溶性混合池与细胞一起孵育,
进入这些细胞的微蛋白被胞质靶捕获。被目标捕获的微蛋白是
然后从细胞内容物中纯化出来,并使用靶向蛋白质组学进行鉴定和定量。的量
捕获样品中的每种蛋白质(相对于起始样品)将提供
交付效率。这种方法是前所未有的,我们将使用不同的
阳性和阴性对照微蛋白、不同的文库大小和不同的细胞系。
有了这种方法,我们将使用我们以前开创的方法来计算设计数千个
候选细胞穿透miniproteins有意不同的序列和结构特性。我们将
然后使用我们新的高通量方法量化这些新蛋白质的胞质递送,
前所未有的大规模交付效率数据。然后我们将使用这些数据来构建机器学习
基于序列和结构特性预测微蛋白递送的模型。最后,我们将反复
根据我们的预测模型设计新的微蛋白库,测试这些设计,
使用我们的高通量实验方法,并进一步更新我们的模型。这种反复的设计测试-
学习方法将对交付的决定因素建立一个强有力的、可预测的理解。最终,
设计细胞穿透微蛋白将在细胞内开启一系列新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Jacob Rocklin其他文献
Gabriel Jacob Rocklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Jacob Rocklin', 18)}}的其他基金
Developing cell-penetrating miniproteins as a new class of therapeutics
开发细胞穿透微型蛋白作为一类新型疗法
- 批准号:
10289040 - 财政年份:2021
- 资助金额:
$ 19.16万 - 项目类别:
High-throughput discovery of protein energy landscapes in natural and designed proteomes
天然和设计蛋白质组中蛋白质能量景观的高通量发现
- 批准号:
10002881 - 财政年份:2020
- 资助金额:
$ 19.16万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant