Alleviation of Glucotoxicity in Pancreatic Beta Cells
减轻胰腺β细胞的糖毒性
基本信息
- 批准号:10454391
- 负责人:
- 金额:$ 50.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-20 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlternative SplicingAntioxidantsApoptosisApoptoticBeta CellBindingBinding ProteinsCarbohydratesCell DeathCell ProliferationCell SurvivalCell physiologyCessation of lifeDiabetes MellitusDiabetic mouseDrug TargetingFunctional disorderGenesGenetic TranscriptionGlucoseHumanHyperglycemiaInsulinInsulin ResistanceLeadMediatingMediator of activation proteinMetabolicModelingMolecularNamesNon-Insulin-Dependent Diabetes MellitusNuclearNuclear ExportObesityPathogenesisPathway interactionsPharmacologyProductionProtein IsoformsResponse ElementsRodentRodent ModelSeriesSignal TransductionSiteStructure of beta Cell of isletSymptomsTXNIP geneTestingTherapeutic InterventionToxic effectType 2 diabeticblood glucose regulationdiabeticexhaustexhaustionexperienceexperimental studyfeasibility testinggain of functiongenetic approachglucose metabolismisletmouse modelnovel therapeuticsoverexpressionpreservationpromotertargeted treatmenttherapeutic developmenttherapeutic evaluationtherapy designtranscription factor
项目摘要
Summary
Type 2 Diabetes (T2D) results from a combination of insulin resistance, most often brought about by
obesity, and a gradual and unrelenting erosion of the ability of pancreatic beta cells to secrete sufficient insulin
to meet the increased metabolic demand for insulin. A major mediator of beta cell dysfunction is glucose
toxicity, mediated by sustained hyperglycemia. During the pathogenesis of T2D a vicious cycle ensues, where
insulin resistance increases the demand for more insulin, but beta cells become “exhausted” and unable to
secret enough insulin to maintain glucose homeostasis, leading to increased hyperglycemia, more beta cell
exhaustion and death, erosion of beta cell mass, and eventually the need for insulin therapy. Therefore, there
is an urgent need for new therapies that block the vicious cycle and preserve beta cell mass. We believe we
have uncovered a molecular mechanism that explains the vicious cycle that erodes beta cell function and beta
cell mass during T2D. This proposal will explore the molecular details of this mechanism and test the feasibility
of therapeutic interventions that preserve rodent and human beta cells in models of glucose toxicity and T2D.
The overarching hypothesis of this proposal is that the feed-forward mechanism of ChREBPβ expression
becomes dysregulated in T2D and drives glucose toxicity through expression of the pro-oxidative activity of
Txnip, the effects of which can be mitigated by the activation of Nrf2. Furthermore, maneuvers that break the
vicious cycle of ChREBPβ production, or mitigate its actions through Txnip inhibition, or Nrf2 activation,
protects beta cell mass and alleviates diabetic burden. This proposal will test this hypothesis by exploring the
molecular regulatory mechanisms between these 3 factors, and by depleting either ChREBPβ or Txnip, or
elevating NRF2, in mouse models of diabetes or glucotoxicity, or in glucotoxic or T2D human islets. Specific
Aim 1 will explore the regulatory relationships between ChREBPβ, Txnip, and NRF2 that determine beta cell
fate. Specific Aim 2 will examine how depletion of ChREBPβ, or Txnip, or activation of NRF2 affects beta cell
function and glucose homeostasis in diabetic and glucotoxic mouse models. Specific Aim 3 will test if depletion
of ChREBPβ, or TXNIP, or activation of NRF2 affects beta cell function and survival in glucotoxic or T2D
human islets. Our results will inform the design of therapies that will mitigate beta cell glucose toxicity and may
result in very specific drugs that target beta cells to preserve beta cell mass and function and alleviate diabetic
symptoms and complications.
总结
2型糖尿病(T2D)是由胰岛素抵抗的组合引起的,最常见的是由以下因素引起的:
肥胖,以及胰腺β细胞分泌足够胰岛素的能力的逐渐和无情的侵蚀
以满足对胰岛素的增加的代谢需求。β细胞功能障碍的主要介质是葡萄糖
毒性,由持续高血糖介导。在T2D的发病过程中,
胰岛素抵抗增加了对更多胰岛素的需求,但β细胞变得“疲惫”,无法
分泌足够的胰岛素来维持葡萄糖稳态,导致高血糖增加,更多的β细胞
衰竭和死亡,β细胞群的侵蚀,最终需要胰岛素治疗。因此
迫切需要新的治疗方法来阻止恶性循环并保护β细胞群。我们相信我们
他们发现了一种分子机制,解释了侵蚀β细胞功能和β细胞功能的恶性循环。
T2D期间的细胞质量。这项提案将探索这一机制的分子细节,并测试其可行性
在葡萄糖毒性和T2D模型中保护啮齿动物和人类β细胞的治疗干预。
该建议的首要假设是ChREBPβ表达的前馈机制
在T2D中变得失调,并通过促氧化活性的表达驱动葡萄糖毒性。
Txnip,其作用可以通过Nrf2的活化来减轻。此外,演习,打破了
ChREBPβ产生的恶性循环,或通过Txnip抑制或Nrf2激活减轻其作用,
保护β细胞群并减轻糖尿病负担。本提案将通过探索
这3种因子之间的分子调节机制,并通过消耗ChREBPβ或Txnip,或
在糖尿病或葡萄糖毒性的小鼠模型中,或在葡萄糖毒性或T2D人胰岛中,升高NRF 2。具体
目的1探讨ChREBPβ、Txnip和NRF 2对β细胞凋亡的调控关系
命运具体目标2将检查ChREBPβ或Txnip的消耗或NRF 2的激活如何影响β细胞
糖尿病和葡萄糖毒性小鼠模型的功能和葡萄糖稳态。具体目标3将测试是否耗尽
ChREBPβ或TXNIP的表达或NRF2的激活影响葡萄糖毒性或T2D中的β细胞功能和存活
人类的小岛我们的研究结果将为减轻β细胞葡萄糖毒性的治疗设计提供信息,
导致靶向β细胞的非常特异性的药物,以保护β细胞的质量和功能,并减轻糖尿病
症状和并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD K. SCOTT其他文献
DONALD K. SCOTT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD K. SCOTT', 18)}}的其他基金
Alleviation of Glucotoxicity in Pancreatic Beta Cells
减轻胰腺β细胞的糖毒性
- 批准号:
10316752 - 财政年份:2021
- 资助金额:
$ 50.21万 - 项目类别:
Alleviation of Glucotoxicity in Pancreatic Beta Cells
减轻胰腺β细胞的糖毒性
- 批准号:
10643853 - 财政年份:2021
- 资助金额:
$ 50.21万 - 项目类别:
Nrf2 and the adaptive expansion of beta cell mass
Nrf2 和 β 细胞质量的适应性扩张
- 批准号:
9924265 - 财政年份:2018
- 资助金额:
$ 50.21万 - 项目类别:
The Role of Myc in ChREBP-dependent, Glucose-stimulated Gene Expression
Myc 在 ChREBP 依赖性、葡萄糖刺激的基因表达中的作用
- 批准号:
8577575 - 财政年份:2012
- 资助金额:
$ 50.21万 - 项目类别:
The Role of Myc in ChREBP-dependent, Glucose-stimulated Gene Expression
Myc 在 ChREBP 依赖性、葡萄糖刺激的基因表达中的作用
- 批准号:
8791682 - 财政年份:2012
- 资助金额:
$ 50.21万 - 项目类别:
The Role of Myc in ChREBP-dependent, Glucose-stimulated Gene Expression
Myc 在 ChREBP 依赖性、葡萄糖刺激的基因表达中的作用
- 批准号:
8607537 - 财政年份:2012
- 资助金额:
$ 50.21万 - 项目类别:
The Role of Myc in ChREBP-dependent, Glucose-stimulated Gene Expression
Myc 在 ChREBP 依赖性、葡萄糖刺激的基因表达中的作用
- 批准号:
8422995 - 财政年份:2012
- 资助金额:
$ 50.21万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Operating Grants
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 50.21万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 50.21万 - 项目类别:
Research Grants