Regulation of Rhythmic m6A RNA Modification by ER‐associated Degradation
ERα相关降解对节律性 m6A RNA 修饰的调节
基本信息
- 批准号:10454294
- 负责人:
- 金额:$ 55.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelApoptosisBindingCellular Metabolic ProcessCircadian RhythmsCuesCytosolEndoplasmic ReticulumEndoplasmic Reticulum Degradation PathwayEnzymesFatty LiverGenetic EngineeringGenetic TranslationGoalsHepaticHigh Fat DietHomeostasisHumanHyperlipidemiaKnockout MiceLightLipidsLiverMediatingMessenger RNAMetabolicMetabolic ControlMetabolic DiseasesMetabolismMethylationModificationMolecularMonitorMusPathway interactionsPeriodicityPhysiologicalPhysiological ProcessesPlayPolyubiquitinationProcessProtein FamilyProteinsQuality ControlRNAReaderRegulationRiskRoleSignal Transduction PathwayTestingTherapeuticTime-restricted feedingTranslationsUbiquitinationcircadiancircadian pacemakerknock-downlipid metabolismmRNA Stabilitymetabolic phenotypemisfolded proteinnon-alcoholic fatty liver diseasenovelpreservationprogramsubiquitin-protein ligase
项目摘要
Endoplasmic Reticulum (ER)-Associated Degradation (ERAD) is a major ER quality-control program that
monitors and translocates unfolded or misfolded protein substrates from the ER to cytosol for polyubiquitination
and proteasomal degradation. N6-methyladenosine (m6A) methylation, the most prevalent internal modification
of mammalian mRNAs, is known to regulate the stability, translation, and function of almost every major class of
human RNAs. Three major families of proteins, including writers, readers, and erasers, are known to be
responsible for the reversible RNA m6A methylation process. However, the signal transduction pathway
underlying the regulation of RNA m6A modification remain elusive. Herein, we accumulated strong preliminary
evidence for an unprecedented circadian-regulated ERAD pathway that controls mRNA m6A modification and
subsequent lipid homeostasis, which we called “circadian ERAD-m6A”. Our major preliminary findings include:
(i) the ER-resident E3 ubiquitin ligase HRD1 and its co-factor SEL1L, the major components of ERAD machinery,
are regulated by the circadian clock in the liver; (ii) HRD1 interacts with and mediates polyubiquitination and
degradation of the specific m6A writer METTL14 and the reader YTHDF3; (iii) HRD1 liver-specific KO (LKO)
mice display reversed fashions with METTL14-LKO or YTHDF3-knockdown mice in hepatic m6A mRNA
methylation levels, expression of lipid metabolic regulators, and metabolic phenotypes associated with hepatic
steatosis and hyperlipidemia; and (iv) unlike the classic ERAD, the newly-identified ERAD-m6A regulatory axis
and its function in hepatic lipid metabolism are under the control of circadian rhythm. These observations led to
our central hypothesis that the liver HRD1-ERAD program, which is oscillated under the circadian clock,
regulates hepatic m6A RNA modification by controlling rhythmic degradation of the specific m6A writer METTL14
and the reader YTHDF3. This unprecedented circadian ERAD-m6A RNA modification regulatory network, which
may be dysregulated by circadian-disrupting cues, represents a major pathway that controls metabolic
homeostasis associated with hepatic steatosis and hyperlipidemia.
In this application, we will utilize molecular and cellular approaches, genetically engineered animal models,
and high-throughput profiling of m6A RNA modification to critically address the function and mechanism by which
circadian ERAD regulates hepatic m6A RNA modification and lipid metabolism. In two aims, we will: 1) define a
novel circadian ERAD pathway that modulates rhythmic m6A RNA modification through degrading the specific
m6A writer and reader; and 2) determine the functional significance of circadian ERAD-m6A RNA modification
pathway in maintaining lipid homeostasis. Upon completion of this project, we will reveal the function and
mechanism by which a novel circadian ERAD-m6A RNA modification pathway regulates lipid homeostasis
associated with metabolic disorders. The findings will open up new paradigms for the studies on the physiological
ERAD and m6A RNA modification and shed new light on developing therapeutics for metabolic disease.
内质网 (ER) 相关降解 (ERAD) 是一项主要的 ER 质量控制程序,
监测未折叠或错误折叠的蛋白质底物并将其从内质网转移到胞质溶胶以进行多泛素化
和蛋白酶体降解。 N6-甲基腺苷 (m6A) 甲基化,最常见的内部修饰
众所周知,哺乳动物 mRNA 可以调节几乎所有主要类别的稳定性、翻译和功能。
人类RNA。已知蛋白质的三个主要家族,包括写入器、读取器和擦除器
负责可逆的 RNA m6A 甲基化过程。然而,信号转导途径
RNA m6A 修饰的调控机制仍然难以捉摸。在此,我们积累了雄厚的前期基础
史无前例的昼夜节律调节 ERAD 通路控制 mRNA m6A 修饰的证据
随后的脂质稳态,我们称之为“昼夜节律ERAD-m6A”。我们的主要初步发现包括:
(i) ER驻留E3泛素连接酶HRD1及其辅因子SEL1L,ERAD机器的主要组成部分,
受肝脏生物钟调节; (ii) HRD1 与多泛素化相互作用并介导
特定 m6A 写入器 METTL14 和读取器 YTHDF3 退化; (iii) HRD1 肝脏特异性 KO (LKO)
METTL14-LKO 或 YTHDF3 敲低小鼠的肝脏 m6A mRNA 表现出相反的模式
甲基化水平、脂质代谢调节因子的表达以及与肝相关的代谢表型
脂肪变性和高脂血症; (iv) 与经典的 ERAD 不同,新确定的 ERAD-m6A 调控轴
其在肝脏脂质代谢中的功能受昼夜节律的控制。这些观察导致
我们的中心假设是,肝脏 HRD1-ERAD 程序在生物钟下振荡,
通过控制特定 m6A writer METTL14 的节律性降解来调节肝脏 m6A RNA 修饰
和读者YTHDF3。这种前所未有的昼夜节律 ERAD-m6A RNA 修饰调控网络,
可能会因昼夜节律干扰信号而失调,代表控制代谢的主要途径
与肝脂肪变性和高脂血症相关的稳态。
在此应用中,我们将利用分子和细胞方法、基因工程动物模型、
以及 m6A RNA 修饰的高通量分析,以关键地解决其功能和机制
昼夜节律 ERAD 调节肝脏 m6A RNA 修饰和脂质代谢。为了实现两个目标,我们将:1)定义
新型昼夜节律 ERAD 通路通过降解特定的 m6A RNA 修饰来调节节律性 m6A RNA 修饰
m6A 作家和读者; 2) 确定昼夜节律 ERAD-m6A RNA 修饰的功能意义
维持脂质稳态的途径。当这个项目完成后,我们将揭示其功能和
新型昼夜节律 ERAD-m6A RNA 修饰途径调节脂质稳态的机制
与代谢紊乱有关。该研究结果将为生理学研究开辟新范式
ERAD 和 m6A RNA 修饰为开发代谢疾病疗法提供了新的思路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deyu Fang其他文献
Deyu Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deyu Fang', 18)}}的其他基金
VPS72 controls Treg cell stability and adaptation to tumor microenvironment
VPS72 控制 Treg 细胞稳定性和对肿瘤微环境的适应
- 批准号:
10754017 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Clinical analysis and therapeutic development of exosomal ACE2
外泌体ACE2的临床分析和治疗进展
- 批准号:
10531071 - 财政年份:2022
- 资助金额:
$ 55.86万 - 项目类别:
Clinical analysis and therapeutic development of exosomal ACE2
外泌体ACE2的临床分析和治疗进展
- 批准号:
10666589 - 财政年份:2022
- 资助金额:
$ 55.86万 - 项目类别:
A deubiquitination module controls Treg adaptation to tumor microenvironment
去泛素化模块控制 Treg 对肿瘤微环境的适应
- 批准号:
10152123 - 财政年份:2021
- 资助金额:
$ 55.86万 - 项目类别:
A deubiquitination module controls Treg adaptation to tumor microenvironment
去泛素化模块控制 Treg 对肿瘤微环境的适应
- 批准号:
10545001 - 财政年份:2021
- 资助金额:
$ 55.86万 - 项目类别:
Regulation of Rhythmic m6A RNA Modification by ER‐associated Degradation
ERα相关降解对节律性 m6A RNA 修饰的调节
- 批准号:
10297978 - 财政年份:2021
- 资助金额:
$ 55.86万 - 项目类别:
Regulation of Rhythmic m6A RNA Modification by ER‐associated Degradation
ERα相关降解对节律性 m6A RNA 修饰的调节
- 批准号:
10615181 - 财政年份:2021
- 资助金额:
$ 55.86万 - 项目类别:
A deubiquitination module controls Treg adaptation to tumor microenvironment
去泛素化模块控制 Treg 对肿瘤微环境的适应
- 批准号:
10320965 - 财政年份:2021
- 资助金额:
$ 55.86万 - 项目类别:
Targeting a Treg deubiquitinase in antitumor immune therapy
抗肿瘤免疫治疗中针对 Treg 去泛素酶的研究
- 批准号:
10429984 - 财政年份:2018
- 资助金额:
$ 55.86万 - 项目类别:
Novel Role of Hepatic SEL1L-HRD1 ERAD in FGF21 Gene Transcription
肝脏 SEL1L-HRD1 ERAD 在 FGF21 基因转录中的新作用
- 批准号:
9792378 - 财政年份:2018
- 资助金额:
$ 55.86万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 55.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists