Preclinical investigation of PI3K inhibition and immune checkpoint blockade combination therapy for treatment of Merkel cell carcinoma using humanized mouse models

使用人源化小鼠模型进行 PI3K 抑制和免疫检查点阻断联合疗法治疗默克尔细胞癌的临床前研究

基本信息

  • 批准号:
    10454765
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Merkel cell carcinoma (MCC) is an aggressive skin cancer that has quadrupled in incidence with a dismal five- year survival rate of less than 18% in advanced diseases. MCC disproportionately and predominantly affects Caucasian males older than 65 who are well represented in our Veteran population, especially for those who are deployed to high UV index tropical and subtropical zones and are not well protected due to other survival priorities. Hence, MCC has a growing impact on the VA healthcare system. Currently, there is no Food and Drug Administration (FDA)-approved targeted therapy for MCC. Recently, immunotherapies such as pembrolizumab and avelumab have been FDA-approved for advanced MCC; nevertheless, a significant portion of patients still succumb to their diseases. Thus, there is an urgent clinical need for novel therapeutic strategies for patients who fail out of or are unsuitable for immunotherapy. Aberrant amplification and mutations of PI3K pathway have been detected in up to 80% of MCCs, making it an attractive therapeutic target. This is supported by our clinical success in treating a Stage IV MCC patient with the 1st FDA approved PI3K- inhibitor idelalisib, which elicited a complete clinical response. Furthermore, our preliminary studies demonstrate that copanlisib, the 2nd FDA approved PI3K inhibitor with activity predominantly against PI3K-α/ isoforms, exerts the most potent antitumor growth effects on MCC. Of relevance to this proposal, PI3K inhibition has been reported to enhance cancer immunotherapies. Thus, there is a strong rationale to develop new combinatorial immunotherapy with targeted therapies to boost therapeutic response and efficacy in MCC. Lack of syngeneic/genetically engineered animal models has hampered preclinical studies in MCC. Notably, in our preliminary studies we have successfully established a powerful, clinically relevant model system of MCC xenograft tumors in mice with competent human immune systems. We hypothesize that PI3K inhibition by copanlisib and PD-1 blockade by pembrolizumab will synergistically attenuate MCC tumor growth by inhibiting MCC cell proliferation and survival and enhancing tumor-infiltration of immune cells and their antitumor activities. Furthermore, we have optimized innovative single-cell RNA sequencing (scRNA-seq) methods to examine tumor heterogeneity and transcriptome profile in human MCC cells. Therefore, we are well positioned to pursue the following specific aims: (Aim 1) examine therapeutic efficacy and identify underlying mechanisms of copanlisib and pembrolizumab therapies on MCC xenograft tumor growth in humanized mice, and (Aim 2) identify cellular and molecular mechanisms of MCC tumor-immune interactions and antitumor immunity in response to copanlisib and pembrolizumab treatments. Using our novel MCC humanized mouse models, we will be able to examine, for the first time, tumor-immune response to copanlisib and pembrolizumab under competent human immune system. Importantly, tumor heterogeneity is a critical determinant of therapeutic failure and tumor progression. Recent advancements in scRNA-seq enable us to explore dynamics of tumor and immune cell subpopulations in response to treatments. To achieve our goals, we will utilize state-of-the-art biotechniques to comprehensively analyze the effects of copanlisib and pembrolizumab treatments on tumors and antitumor immunity at tissue, cellular, and molecular levels. We expect that successful completion of the proposed work will result in the following advances: (1) establishment of a novel treatment paradigm for combinatorial therapies in MCC, as well as other cancers that affect our Veterans and their family members such as melanoma and high-risk head and neck squamous cell carcinoma, (2) identification of tumor and immune cell subpopulations that mediate drug response, as well as biomarkers for sensitivity/resistance to copanlisib and/or pembrolizumab treatment, which can lead to future discovery of effective therapeutic strategies. Knowledge gained from the proposed studies will validate and accelerate clinical translation, which will help Veterans who suffer from MCC and cancers for which current immunotherapies are insufficient.
梅克尔细胞癌(MCC)是一种侵袭性皮肤癌,发病率是原来的四倍,发病率为五倍

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Gao其他文献

Ling Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Gao', 18)}}的其他基金

Unravel the role of CD276 and determine efficacy of CD276-targeted therapy on Merkel cell carcinoma progression and metastasis
揭示 CD276 的作用并确定 CD276 靶向治疗对默克尔细胞癌进展和转移的疗效
  • 批准号:
    10584403
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying novel therapies targeting Merkel cell carcinoma and tumor microenvironment
确定针对默克尔细胞癌和肿瘤微环境的新疗法
  • 批准号:
    10665544
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Identifying novel therapies targeting Merkel cell carcinoma and tumor microenvironment
确定针对默克尔细胞癌和肿瘤微环境的新疗法
  • 批准号:
    10341321
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Preclinical investigation of PI3K inhibition and immune checkpoint blockade combination therapy for treatment of Merkel cell carcinoma using humanized mouse models
使用人源化小鼠模型进行 PI3K 抑制和免疫检查点阻断联合疗法治疗默克尔细胞癌的临床前研究
  • 批准号:
    10618864
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Preclinical investigation of PI3K inhibition and immune checkpoint blockade combination therapy for treatment of Merkel cell carcinoma using humanized mouse models
使用人源化小鼠模型进行 PI3K 抑制和免疫检查点阻断联合疗法治疗默克尔细胞癌的临床前研究
  • 批准号:
    10015843
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了