Gut-brain axis in metabolic disease
代谢疾病中的肠脑轴
基本信息
- 批准号:10454934
- 负责人:
- 金额:$ 186.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAmygdaloid structureBariatricsBehavioralBody WeightBody Weight decreasedBrainBrain StemCalcitoninCaloriesCellsCholecystokininDevelopmentEatingElectrophysiology (science)EndocrineEnergy MetabolismFoodFood Intake RegulationForeign BodiesGastric EmptyingGastrointestinal tract structureGlucoseGoalsHypothalamic structureImpairmentIndividualInfectious AgentIngestionLabelMeasuresMediatingMetabolicMetabolic DiseasesMethodsMolecularMonitorMotivationNatureNauseaNeuronsNucleus solitariusNutrientObesityOperative Surgical ProceduresPeripheralPharmacologyPhysiologicalPlayPopulationProceduresProgram Research Project GrantsRoleSatiationSensorySignal TransductionStimulusStructure of area postremaSymptomsSystemTarget PopulationsTechniquesTestingTherapeuticToxinUrsidae FamilyWorkbariatric surgerycell motilitycell typeexperiencegastrointestinal functiongut-brain axishedonichormonal signalsleptin receptormouse modelneural circuitneuronal circuitryneurotransmissionnext generation sequencingnovel therapeutic interventionobesity treatmentparabrachial nucleusprogramsrelating to nervous systemresponsetargeted treatment
项目摘要
Project Summary/Abstract
A wide range of evidence points to the critical role that signals from the gut, acting in the CNS, play in
the regulation of food intake, body weight and the disposition of metabolic fuels including glucose. Some of the
most powerful evidence for the critical nature of this “gut-brain” axis comes from direct manipulations of the GI
tract that occur during various bariatric surgical procedures. These procedures are often thought of as
“restrictive” or “malabsorptive”, however, it is clear that the potent effects of these procedures to reduce body
weight and glucose levels are the product of altering the activity of the gut-brain axis. The important point is
that manipulation of the gut via these surgical interventions provides the largest and most sustained weight
loss in individuals with obesity compared to any other therapeutic option. Thus a better understanding of the
gut-brain axis is crucial for the development of new, less invasive and more scalable solutions to treat obesity.
While the importance of the gut-brain axis is clear, our understanding of how this axis works remains
incomplete. This program project grant will bring together a range of experiences and technical approaches
under a single coordinated project that will allow for rapid understanding of the impact of gut, neural and
hormonal signals on their crucial targets within brainstem neural circuitry. To that end, the current projects will
utilize advanced neuroanatomical tracing, electrophysiology, activation and silencing of circuits, next
generation sequencing and apply all of these methods exclusively in molecularly defined cell-types using a
broad range of mouse models we have developed. These approaches will be combined with a range of
behavioral and physiological measures of food intake, energy expenditure and GI function. Finally, we will
bring to bear advanced surgical approaches that allow for assessment of the impact of bariatric surgery in
these mouse models.
The ultimate goal of this project is to identify key aspects of how the GI tract impacts these neuronal
circuits, the identification of key neuronal populations that are the target of those GI signals and how each
population can influence food intake, body weight and regulate GI function. The guiding hypothesis is that the
signals generated and the neural circuit engaged by toxins and those by normal presentation of nutrients to the
GI tract will be distinct in several key regions of the brainstem. The detailed understanding of these parallel
circuits will allow for a better understanding of existing therapies that target the brainstem and the development
of entirely new therapeutic strategies that appropriately engage this circuitry in a manner that is similar to what
happens after bariatric surgery.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDY J SEELEY其他文献
RANDY J SEELEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDY J SEELEY', 18)}}的其他基金
Intestinal Reg3g as a mediator of dietary, pharmacological and surgical therapies for obesity and diabetes
肠道 Reg3g 作为肥胖和糖尿病饮食、药物和手术治疗的中介
- 批准号:
10654019 - 财政年份:2022
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10454936 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10018878 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10667317 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Role of GDF15 and its receptor in the CNS regulation of food intake and body weight
GDF15及其受体在中枢神经系统食物摄入和体重调节中的作用
- 批准号:
10311051 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
9792644 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:














{{item.name}}会员




