CPS: Functional Feedback Methods for Wearable Focused Ultrasound Therapy
CPS:可穿戴聚焦超声治疗的功能反馈方法
基本信息
- 批准号:10457466
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAlgorithmsAreaBiological SciencesBiomedical TechnologyBudgetsChronicCognitiveComplexConsumptionData AnalyticsDepositionDevicesElectronic Health RecordElectronicsElementsEngineeringEventFaceFeedbackFocused UltrasoundFocused Ultrasound TherapyFoundationsFrequenciesGeometryGoalsHealth BenefitHeatingImageInterventional UltrasonographyIon ChannelMagnetic Resonance ImagingMapsMeasuresMechanicsMemoryMethodsMissionModalityMonitorMotionMovementMuscleNational Institute of Biomedical Imaging and BioengineeringNerveNoiseOrganOutcomeOveractive BladderPatientsPatternPerfusionPeripheral NervesPeripheral Nervous SystemPhysicsPhysiologicalPopulationPositioning AttributeResearchResearch DesignResolutionScanningScienceShapesSyndromeTechniquesTechnologyTemperatureTherapeuticThermographyTimeTissuesTransducersTranslational ResearchUltrasonic TherapyUltrasonographyWorkbasebiological heterogeneitybiomedical imagingchronic painclinical applicationcloud basedcomputerized data processingcostdata fusiondeep learningdesigndigitaldiverse dataflexibilityimage guidedimage guided interventionimaging modalityimprovedin vivoindividualized medicineinterestlearning strategyminiaturizemobile applicationmultimodalityneuroregulationportabilityreal time monitoringreduce symptomssensorsignal processingsoft tissuespatiotemporalultrasoundvectorwireless
项目摘要
Focused ultrasound (FUS) is a versatile therapeutic modality that offers a non-invasive way to deposit targeted acoustic energy deep in the body, resulting in complex interactions with tissues and organs that occur through both thermal and non-thermal mechanisms. An interesting example is neuromodulation, in which low-intensity ultrasound results in noninvasive and spatially/temporally precise changes in the firing rates and patterns of peripheral nerves, likely due to a combination of both tissue heating and mechanical activation of ion channels. Promising clinical applications for ultrasound neuromodulation include treatment of overactive bladder syndrome (OAB), which is prevalent in ~23% of the U.S. population, and also chronic pain. These applications require chronic and patient-specific treatment to obtain long-term health benefits, which in turn suggests the use of wearable and autonomous FUS devices. However, realizing such devices faces several fundamental challenges, including i) safe and precise delivery of FUS therapy to a specific body target (in this case, a nerve) in the presence of positoning errors and internal tissue/organ motion; and ii) determining optimal values for the neuromodulation parameters (frequency, repetition rate, waveform, power level), which are expected to be both patient-specific (due to biological heterogeneity) and time-dependent. In this proposal, an interdisciplinary team will address these challenges by pioneering a closed-loop approach to wearable FUS neuromodulation.
The proposed project will enable closed-loop wearable ultrasound therapy by pursuing the following specific aims: (1) wearable and body-conformal ultrasound arrays, (2) multi-dimensional signal processing, (3) active sensing, and (4) multimodal feedback. The PI and co-Is have complementary expertise and will demonstrate the strengths of tightly integrating these interdisciplinary aims into a single framework. We believe the resulting outcomes could transform the research and design of non-invasive devices for modulating the peripheral nervous system. In addition, our work is expected to achieve fundamental advances in IoT-enabled sensing platforms (flexible and body-conformal ultrasound imaging and neuromodulation), physics-driven data processing and analytics (spatio-temporal Delta-Sigma algorithms, active scanning), and real-time control (discovery of optimum neuromodulation parameters).
聚焦超声(FUS)是一种多功能的治疗模式,它提供了一种非侵入性的方式将目标声能存款体内深处,从而通过热和非热机制与组织和器官发生复杂的相互作用。一个有趣的例子是神经调节,其中低强度超声导致周围神经的放电率和模式的非侵入性和空间/时间精确变化,这可能是由于组织加热和离子通道的机械激活的组合。超声神经调节的有前景的临床应用包括治疗膀胱过度活动综合征(OAB),这在约23%的美国人口中普遍存在,以及慢性疼痛。这些应用需要慢性和患者特定的治疗,以获得长期的健康益处,这反过来又建议使用可穿戴和自主FUS设备。然而,实现这样的设备面临着几个基本挑战,包括i)安全和精确地将FUS治疗递送到特定的身体目标(在这种情况下,神经)在存在定位误差和内部组织/器官运动的情况下;以及ii)确定神经调节参数的最佳值(频率、重复率、波形、功率电平),预期其是患者特异性的(由于生物异质性)和时间依赖性的。在这项提案中,一个跨学科团队将通过开创可穿戴FUS神经调节的闭环方法来应对这些挑战。
拟议的项目将通过追求以下具体目标实现闭环可穿戴超声治疗:(1)可穿戴和身体适形超声阵列,(2)多维信号处理,(3)主动传感和(4)多模态反馈。PI和co-Is具有互补的专业知识,并将展示将这些跨学科目标紧密整合到一个单一框架中的优势。我们相信,由此产生的结果可能会改变用于调节周围神经系统的非侵入性设备的研究和设计。此外,我们的工作预计将在物联网传感平台(灵活和身体适形超声成像和神经调节),物理驱动的数据处理和分析(时空Delta-Sigma算法,主动扫描)以及实时控制(发现最佳神经调节参数)方面取得根本性进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swarup Bhunia其他文献
Swarup Bhunia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Swarup Bhunia', 18)}}的其他基金
CPS: Functional Feedback Methods for Wearable Focused Ultrasound Therapy
CPS:可穿戴聚焦超声治疗的功能反馈方法
- 批准号:
10627982 - 财政年份:2021
- 资助金额:
$ 27.58万 - 项目类别:
CPS: Functional Feedback Methods for Wearable Focused Ultrasound Therapy
CPS:可穿戴聚焦超声治疗的功能反馈方法
- 批准号:
10315071 - 财政年份:2021
- 资助金额:
$ 27.58万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Discovery Launch Supplement