Innate cellular responses against Adeno-associated virus in hematopoietic stem and progentitor cells influence cell survival and repopulation capacity

造血干细胞和祖细胞中针对腺相关病毒的先天细胞反应影响细胞存活和增殖能力

基本信息

  • 批准号:
    10461709
  • 负责人:
  • 金额:
    $ 6.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-12 至 2023-08-11
  • 项目状态:
    已结题

项目摘要

Gene editing of hematopoietic stem and progenitor cells (HSPCs) has the potential to cure many genetic diseases of the blood and immune system. Using targeted nucleases followed by delivery of a DNA donor template for homology directed repair (HDR) using an adeno-associated viral (AAV) vector, we and others have achieved high efficiency gene correction at multiple therapeutically relevant genetic loci. Human HSPCs can undergo high efficiency correction and reconstitute the blood and immune system in vivo after engraftment into immune-compromised NSG mice. However, transduction by the AAV vector impairs cell survival, proliferation, and engraftment efficiency. This proposal aims to understand the innate immune cellular responses to the AAV vector at the bulk population and single-cell level in HSPCs in order to obtain high efficiency gene correction without impairment of HSPC survival or self-renewal capacity. Although HSPCs can undergo high efficiency HDR, these cells are drastically (4-10 fold) impaired for engraftment compared to untreated controls, which we have determined is due to the AAV vector. In dose response experiments, high copy number transduction demonstrated decreased cell viability and proliferation as well as decreased progenitor cell survival as measured by Colony Forming Unit assay, toxicity which correlates with increased nuclear accumulation of AAV genomes as measured by digital droplet PCR. We therefore propose to investigate two antiviral pathways, NF-kB (Aim 1) and cGAS (Aim 2), across a range of AAV copy numbers to determine their effect on HSPC survival by measuring activation of these pathways as well as inhibition and knock-out experiments using transduction of GFP expressing vectors and CFU assays for progenitor cell survival. After initial studies on progenitor cell survival we will determine whether transient NF-kB and cGAS inhibition improves self-renewal of long-term hematopoietic stem cells through engraftment in NSG mice. We will simultaneously use an unbiased hypothesis generating approach in Aim 3 to determine cellular responses to AAV occurring in HSPC subpopulations through single-cell RNA-seq experiments which may be missed in Aim 1 and 2 experiments using the whole population or large subpopulations. My scientific environment and training plan are ideal for successful completion of this research proposal. The Stanford Stem Cell Institute has many talented stem cell researchers which are highly collaborative as demonstrated by our RNA-seq collaboration with Dr. Irv Weissman. The wealth of scientific resources including our dedicated FACS core and career resources offered through the Office of Post-doctoral Affairs, as well as scientific and career training from my mentor Dr. Porteus will allow me to achieve my scientific and career goals. Successful completion of this proposal will both further our understanding of HSPC biology and self-renewal in the context of antiviral responses, as well as improve the development of gene- editing based therapeutics in HSPCs.
造血干细胞和祖细胞(HSPC)的基因编辑有可能治愈许多 血液和免疫系统的遗传性疾病。使用靶向核酸酶,然后递送DNA 使用腺相关病毒载体进行同源定向修复(HDR)的供体模板,我们和 其他人则在多个治疗相关的遗传位点上实现了高效的基因校正。人类 HSPC在体内可以进行高效的纠正和重建血液和免疫系统 移植到免疫受损的NSG小鼠体内。然而,AAV载体的转导会损害细胞 存活、增殖和植入效率。这项提议旨在了解先天免疫细胞 在HSPC的群体和单细胞水平上对AAV载体的应答,以获得高 在不损害HSPC存活或自我更新能力的情况下,有效地进行基因纠正。 尽管HSPC可以经历高效率的HDR,但这些细胞在 与未经处理的对照相比,我们已经确定这是由于AAV载体所致。In剂量 反应实验,高拷贝数转导显示细胞存活率和增殖能力下降。 以及通过集落形成单位实验测量的祖细胞存活率下降,毒性 与数字滴状聚合酶链式反应检测到的AAV基因组核积累增加有关。我们 因此,建议研究两种抗病毒途径,核因子-kB(目标1)和cGAS(目标2),跨越一系列 AAV拷贝数通过测量这些通路的激活来确定它们对HSPC存活的影响 以及GFP表达载体转导和CFU检测的抑制和基因敲除实验 为了祖细胞的存活。在对祖细胞存活进行初步研究后,我们将确定是否存在暂时性 抑制核因子-kB和cGAS通过植入促进长期造血干细胞的自我更新 在NSG小鼠中。我们将同时使用目标3中的无偏假设生成方法来确定 通过单细胞RNA-SEQ实验在HSPC亚群中发生对AAV的细胞反应 在使用整个种群或大的亚种群的目标1和2实验中可能会遗漏。 我的科学环境和培训计划是成功完成这项研究的理想条件 求婚。斯坦福干细胞研究所有许多才华横溢的干细胞研究人员,他们非常 协作,我们与Irv Weissman博士的RNA-SEQ合作证明了这一点。科学的财富 资源包括我们专门的FACS核心和通过博士后办公室提供的职业资源 事务,以及来自我的导师Porteus博士的科学和职业培训将使我实现我的 科学和职业目标。这项建议的成功完成将加深我们对HSPC的了解 生物学和自我更新在抗病毒反应的背景下,以及改善基因的发展- 在HSPC中编辑基于治疗学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amanda M Dudek其他文献

Amanda M Dudek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amanda M Dudek', 18)}}的其他基金

Mechanisms that Enhance and Suppress HIV-1 Resistance in Gene Edited Primary Human Cells
增强和抑制基因编辑原代人类细胞中 HIV-1 耐药性的机制
  • 批准号:
    10700726
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Innate cellular responses against Adeno-associated virus in hematopoietic stem and progentitor cells influence cell survival and repopulation capacity
造血干细胞和祖细胞中针对腺相关病毒的先天细胞反应影响细胞存活和增殖能力
  • 批准号:
    10480939
  • 财政年份:
    2020
  • 资助金额:
    $ 6.64万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了