Using Data Integration and Predictive Analytics to Improve Diagnosis-Based Performance Measures
使用数据集成和预测分析来改进基于诊断的绩效衡量
基本信息
- 批准号:10457091
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlcohol consumptionAlcoholsBenchmarkingBusinessesCaringClinicalCodeCollectionComplexDSM-IVDSM-VDataData SourcesDiagnosisDiagnosticDiseaseDisease SurveillanceDocumentationDrug Use DisorderDrug usageEffectivenessElectronic Health RecordEnsureEthnic groupGeographic LocationsGoalsGoldGuidelinesHealthHealth Information SystemHealth Services AccessibilityHealthcareHealthcare SystemsICD-9IntelligenceLeadLogisticsMeasurementMeasuresMental HealthMethodsModelingModernizationMonitorOutcomePatient CarePatientsPerformancePharmaceutical PreparationsPoliciesPopulationPredictive AnalyticsPrevalenceProcess MeasureProviderQualifyingResearchResourcesRetinal blind spotSiteSourceStigmatizationStructureSubstance Use DisorderSurveysSystemTelephone InterviewsTimeValidationVariantVeteransWorkbasecare deliverycase findingcostcost effectivedata integrationdata warehousefallsgaps in accesshealth care deliveryhealth care disparityimprovedinnovationinstrumentmachine learning algorithmmodel developmentoperationpatient subsetsperformance based measurementpredictive modelingprogramsprototyperacial and ethnicremediationsexsocial stigmasurveillance data
项目摘要
Background: VA performance monitoring makes extensive use of diagnosis-based quality measures that track
delivery of care only among patients who have qualifying ICD-9 diagnosis codes. Diagnosis-based measures
can be calculated using existing VA data, allowing for low-cost, near real-time performance monitoring.
However, diagnosis-based measures can have critical validity problems if the targeted condition is under- or
over-diagnosed to differing degrees across facilities. When variation is diagnosing and coding occurs, facility
rankings on measured performance can be misleading: High performing facilities can score poorly, low
performing facilities can score well, and facilities with the same real performance can fall at opposite ends of
the facility rank distribution. Use of diagnosis-based process measures can therefore undermine one of the
primary purposes of quality measurement: The comparison of facilities and systems. In addition, diagnosis-
based measures cannot be used to detect gaps in access to care for patients who have a targeted condition
but no qualifying diagnosis code. Finally, when diagnosis rates vary across patient subgroups, diagnosis-based
measures cannot be used to detect and act on healthcare disparities. Problems with diagnosis-based
measures could be remedied if true prevalence data were available: Comparisons of performance based on
diagnosis- versus prevalence-based measures would detect facilities with anomalous diagnosis rates and
distinguish variation in true performance from variation in case-finding. However, for many conditions, the
electronic health record (EHR) does not contain data on true prevalence.
Objectives: The goal of the proposed project is to develop a general method for improving diagnosis-based
measures when valid prevalence data are not readily available. We propose to build a model for predicting
prevalence using multiple sources of existing data and to validate it through a one-time collection of gold
standard outcome data (survey-based SUD prevalence). Leveraging existing data with targeted collection of
model development and validation data is a cost-effective strategy to improve diagnosis-based measures
without requiring ongoing, expensive disease surveillance. Focusing on substance use disorder (SUD) care as
an example, the objectives of this study are to: (a) assess the degree of SUD under- or over-diagnosis by
comparing the proportion of patients with coded SUD diagnoses in the VA administrative data to SUD
prevalence estimates obtained using a validated measure in a patient survey conducted at 30 VA healthcare
systems; (b) refine and validate a model for predicting SUD prevalence among VA patients using multiple
existing data sources; and (c) assess disparities in SUD diagnosis by comparing diagnosis rates to survey-
based SUD prevalence estimates across patient age, sex, and racial/ethnic groups.
Methods: We will collect data on DSM-IV and DSM-5-concordant SUD among VA patients using a validated
instrument. We will conduct telephone interviews with patients at 30 VA healthcare systems selected based on
geographic region and expected differences between observed SUD diagnosis and true SUD prevalence. We
will compare observed diagnosis rates to survey-based prevalence estimates. We will refine a prototype SUD
prediction model using as inputs population SUD surveillance data for Veterans from the National Surveys on
Drug Use and Health, EHR data from VA Corporate Data Warehouse, and organizational survey data from the
VA Drug and Alcohol Program Survey. The model will be developed and validated using survey-based SUD
prevalence as the outcome. We will fit the model using traditional methods and more modern machine learning
algorithms and will select a final model based on established criteria for predictive validity. We will compute
facility performance rankings using diagnosis rates versus predicted prevalence to assess the extent to which
variation in performance may reflect variation in diagnosis or coding. Finally, we will assess possible disparities
in diagnosing by comparing the gap between diagnosis and estimated prevalence across patient groups.
背景:VA性能监控广泛使用基于诊断的质量度量来跟踪
仅在具有合格ICD-9诊断代码的患者中提供护理。基于诊断的措施
可以使用现有的VA数据进行计算,从而实现低成本、近乎实时的性能监控。
然而,如果目标条件低于-或,基于诊断的措施可能存在严重的有效性问题
不同设施的过度诊断程度不同。当发生变异诊断和编码时,工具
衡量绩效的排名可能具有误导性:高性能设施的得分可能很低
表演设施可以得分很高,而具有相同真实表现的设施可以落在
设施等级分布。因此,使用基于诊断的流程措施可能会破坏
质量测量的主要目的:对设施和系统进行比较。此外,诊断-
不能使用基于措施的方法来检测有针对性疾病的患者在获得护理方面的差距
但没有合格的诊断代码。最后,当不同患者亚组的诊断率不同时,基于诊断
不能使用措施来发现医疗保健差距并对其采取行动。基于诊断的问题
如果有真实的流行率数据,可以补救措施:基于以下方面的绩效比较
基于诊断与基于流行率的措施将检测具有异常诊断率的设施和
区分真实表现中的差异和病例发现中的差异。然而,在许多情况下,
电子健康记录(EHR)不包含有关真实流行率的数据。
目标:拟议项目的目标是开发一种改进基于诊断的一般方法
在没有有效的流行数据时采取措施。我们建议建立一个预测模型
使用现有数据的多个来源并通过一次性收集黄金进行验证
标准结果数据(基于调查的SUD患病率)。利用现有数据,有针对性地收集
模型开发和验证数据是改进基于诊断的措施的一种经济高效的策略
而不需要持续、昂贵的疾病监测。关注物质使用障碍(SUD)护理,如
例如,这项研究的目标是:(A)通过以下方式评估SUD的诊断不足或过度诊断的程度
比较VA管理数据中编码了SUD诊断的患者与SUD的比例
在30VA医疗保健进行的患者调查中使用验证测量获得的患病率估计
系统;(B)改进和验证用于预测VA患者中SUD患病率的模型
现有数据来源;以及(C)通过比较诊断率与调查-
基于患者年龄、性别和种族/民族的SUD患病率估计。
方法:我们将收集VA患者的DSM-IV和DSM-5-一致性SUD的数据
乐器。我们将对30个VA医疗系统的患者进行电话采访,这些系统是根据
观察到的SUD诊断与真实的SUD患病率之间的地理区域和预期差异。我们
将把观察到的诊断率与基于调查的流行率估计值进行比较。我们将提炼一个原型SUD
以全国退役军人人口监测数据为输入的预测模型
药物使用和健康,来自退伍军人事务部数据仓库的EHR数据,以及来自
退伍军人事务部毒品和酒精项目调查。该模型将使用基于调查的SUD进行开发和验证
作为结果的流行率。我们将使用传统方法和更现代的机器学习来拟合模型
算法,并将根据已建立的预测有效性标准选择最终模型。我们将计算
使用诊断率与预测患病率进行设施性能排名,以评估以下情况的程度
性能的不同可能反映诊断或编码的不同。最后,我们将评估可能存在的差距
通过比较不同患者组之间的诊断和估计患病率之间的差距来进行诊断。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine JoAnn Hoggatt其他文献
Katherine JoAnn Hoggatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine JoAnn Hoggatt', 18)}}的其他基金
Long-Term Opioid Therapy: Screen to Evaluate and Treat (Opioid-SET)
长期阿片类药物治疗:筛查、评估和治疗 (Apioid-SET)
- 批准号:
10229342 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Quantifying the Burden of Disease and Healthcare Need in Veterans and Civilians
量化退伍军人和平民的疾病负担和医疗保健需求
- 批准号:
10237118 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Quantifying the Burden of Disease and Healthcare Need in Veterans and Civilians
量化退伍军人和平民的疾病负担和医疗保健需求
- 批准号:
10845255 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Using Data Integration and Predictive Analytics to Improve Diagnosis-Based Performance Measures
使用数据集成和预测分析来改进基于诊断的绩效衡量
- 批准号:
10051319 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Improving care for women Veterans with substance use disorders
改善对患有药物滥用障碍的女性退伍军人的护理
- 批准号:
8278266 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似海外基金
The investigation of chronic alcohol consumption enhanced aging colon in elder mice and the mechanism of suppressed on aging colon tissues by sesame lignans continuous intake
长期饮酒促进老年小鼠结肠衰老的研究及持续摄入芝麻木脂素抑制结肠组织衰老的机制
- 批准号:
23K10904 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of carcinogenesis and symptoms associated with alcohol consumption
致癌的分子机制和饮酒相关症状
- 批准号:
23K05734 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Internal Sources of Minority Stress and Alcohol Consumption
少数群体压力和饮酒的内部根源
- 批准号:
10742318 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Characterizing the Relationship Between Alcohol Consumption and Neuron-Derived Exosomal MicroRNA Cargo in an Adolescent-Young Adult Twin Cohort
青少年双胞胎队列中酒精消耗与神经元衍生的外泌体 MicroRNA 货物之间关系的表征
- 批准号:
10452928 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Endocrine regulation of alcohol consumption and fear learning
饮酒和恐惧学习的内分泌调节
- 批准号:
10483780 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The impact of friends sharing different modalities of alcohol-related social media content on alcohol consumption: A longitudinal examination of changes in content shared by social networks over time
朋友分享不同形式的酒精相关社交媒体内容对饮酒的影响:对社交网络分享内容随时间变化的纵向研究
- 批准号:
10534428 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10339931 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Chronic alcohol consumption results in elevated Autotaxin levels that suppress anti-tumor immunity
长期饮酒会导致自分泌运动因子水平升高,从而抑制抗肿瘤免疫力
- 批准号:
10370159 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10595096 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Technology-based assessments and intervention to reduce alcohol consumption and improve HIV viral suppression in the Florida Cohort
基于技术的评估和干预,以减少佛罗里达队列的饮酒量并改善艾滋病病毒抑制
- 批准号:
10707386 - 财政年份:2022
- 资助金额:
-- - 项目类别:














{{item.name}}会员




