Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
基本信息
- 批准号:10460247
- 负责人:
- 金额:$ 57.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AftercareAnti-Tumor Necrosis Factor TherapyAntirheumatic AgentsBiological MarkersBiological Response Modifier TherapyBiologyBiopsyCell SeparationCharacteristicsClinicalClinical DataClinical TrialsComputational BiologyComputer AnalysisConsumptionDataDecision MakingDiseaseDisease PathwayEpidemiologyExhibitsFutureGene ExpressionGene Expression ProfileGenesGenetic TranscriptionIndividualJointsMedical centerMethotrexateMonitorMutationOncologistOrganPatient RecruitmentsPatientsPharmaceutical PreparationsPharmacotherapyPrediction of Response to TherapyPredictive ValuePredispositionProcessPublishingRandomizedResearch PersonnelResistanceRheumatoid ArthritisSample SizeSubgroupSynovial MembraneTNF geneTestingTherapeuticTimeTissuesTreatment EfficacyUnited StatesWorkarthritis registryarthritis therapybaseclinical practicecohortcostdifferential expressioneffective therapyfunctional genomicsindexingindividual patientineffective therapiesinhibitormacrophagenovelnovel markerpatient responsepatient stratificationperipheral bloodprecision medicinepredicting responsepredictive markerpredictive signaturerecruitresponserheumatologiststandard of caretooltranscriptome sequencingtranscriptomicstreatment responsetumorultrasound
项目摘要
Despite the many therapies for patients with rheumatoid arthritis (RA), there is little information to
guide selection of the most effective treatment for an individual patient. Forty-sixty percent of
patients with RA respond (defined by ACR50 response criteria) to conventional disease modifying
anti-rheumatic drugs (cDMARDs) or cDMARDs plus anti-tumor necrosis factor (TNF) therapy.
Moreover, 20-40% of RA subjects in clinical trials never demonstrate even a minimal response
(ACR20 response criteria). Hence, there is a clear need to develop precision-based therapy for
patients with RA, whereby novel biomarkers will enhance our ability to predict therapeutic
response and limit ineffective therapy. For the most part, peripheral blood has been utilized for
identifying predictive biomarkers, but these studies lacked sufficient precision to allow their
incorporation into clinical practice. Thus, similar to an oncologist, who identify mutations through
sequencing of tumor biopsies to direct therapy, our approach is to biopsy the synovium, the target
organ in RA to identify changes that reflect sensitivity or resistance to a particular therapy.
We brought together six leading medical centers to create REASON, a consortium with
an established framework for patient recruitment, curation of clinical data, ultrasound-guided
synovial biopsies, cell sorting, RNA sequencing (RNA-seq), and computational analyses. Our
data show that macrophages isolated from ultrasound-guided synovial tissue biopsies obtained
from patients with RA are sufficient for RNA-seq, exhibit transcriptional differences across patients
with RA, and, importantly, set the framework for the stratification of patients with RA according to
the most prominent disease pathway. We are the first to identify 6 transcriptional modules of
co-regulated genes from isolated synovial macrophages via ultrasound-guided synovial
biopsy, that are individually associated with clinical disease status and cDMARD or
biologic therapy (bDMARD). This study established REASON as a leader in the United States
for ultrasound-guided synovial biopsies and demonstrates the feasibility and therapeutic potential
of isolating low numbers of synovial macrophages for RNA-seq to establish a precision-medicine
approach for RA therapy and to understand pathobiology. While our published study identified
transcriptional signatures associated with bDMARD or methotrexate usage in RA patients with
active disease, there is a central need to identify genes that are predictive of response to therapy.
Our overarching hypothesis is that functional genomic analysis of synovial macrophages will
identify novel transcriptional signatures that inform on response to particular therapies in
individual patients, thereby enabling researchers and, ultimately, clinicians to identify the drug
most likely to work for each patient.
尽管有许多治疗类风湿性关节炎(RA)患者的方法,但很少有信息
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harris R Perlman其他文献
Harris R Perlman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harris R Perlman', 18)}}的其他基金
Macrophage Heterogeneity in Rheumatoid Arthritis
类风湿关节炎中的巨噬细胞异质性
- 批准号:
10392246 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Macrophage Heterogeneity in Rheumatoid Arthritis
类风湿关节炎中的巨噬细胞异质性
- 批准号:
10609468 - 财政年份:2022
- 资助金额:
$ 57.09万 - 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
- 批准号:
10679089 - 财政年份:2019
- 资助金额:
$ 57.09万 - 项目类别:
Transcriptional Signature of Macrophages in SSc
SSc 中巨噬细胞的转录特征
- 批准号:
10005890 - 财政年份:2019
- 资助金额:
$ 57.09万 - 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
- 批准号:
9766023 - 财政年份:2019
- 资助金额:
$ 57.09万 - 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
- 批准号:
10020786 - 财政年份:2019
- 资助金额:
$ 57.09万 - 项目类别:
Synovial Macrophage Transcriptional Signatures for Predicting Therapeutic Efficacy
用于预测治疗效果的滑膜巨噬细胞转录特征
- 批准号:
10242125 - 财政年份:2019
- 资助金额:
$ 57.09万 - 项目类别:
RhEumatoid Arthritis SynOvial tissue Network (REASON)
类风湿性关节炎滑膜组织网络 (REASON)
- 批准号:
9130014 - 财政年份:2014
- 资助金额:
$ 57.09万 - 项目类别:
RhEumatoid Arthritis SynOvial tissue Network (REASON)
类风湿性关节炎滑膜组织网络 (REASON)
- 批准号:
9130011 - 财政年份:2014
- 资助金额:
$ 57.09万 - 项目类别: