Studying perceptual decision-making across cortex by combining population imaging, connectomics, and computational modeling
通过结合群体成像、连接组学和计算模型来研究跨皮层的感知决策
基本信息
- 批准号:10460526
- 负责人:
- 金额:$ 113.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnatomyBehavioralBipolar DisorderCalciumCellsCodeCommunitiesComplexComputer ModelsCouplingCuesDataData SetDecision MakingElectron MicroscopyEsthesiaImageKnowledgeMeasurementMeasuresMethodsModelingMusNeural Network SimulationNeuronsNeurophysiology - biologic functionOutputParietal LobePatternPerceptionPlayPopulationProcessRecurrenceResearch PersonnelResourcesRoleSamplingSchemeSchizophreniaSensoryShapesStimulusStructure-Activity RelationshipTestingTimeVisual CortexWorkassociation cortexautism spectrum disorderbasecomputer frameworkcomputerized toolsconnectome datadata-driven modelnervous system disordernetwork modelsneural circuitneuropsychiatric disordernovelnovel strategiesreconstructionrecurrent neural networkrelating to nervous systemsensory cortexsensory stimulusskillsstudy populationsynergismtooltwo-photonvirtual realityvisual coding
项目摘要
Project Summary
During perceptual decision-making, populations of neurons, arranged in highly interconnected microcircuits,
work together to encode sensory stimuli and to transform sensory perception into appropriate behavioral choices.
A fundamental gap in our knowledge about perceptual decision-making is understanding how the connectivity in
cortical microcircuits shapes dynamics and information codes in populations of neurons. This gap has arisen
because anatomical connectivity and activity have generally been studied separately, and because a
computational framework to understand structure-function relationships in cortical microcircuits is missing. Here,
we will assemble a team of researchers with complementary skills to tackle this problem. We will combine
approaches to study population coding and dynamics using two-photon calcium imaging during a novel and
complex decision task for mice, with measurements of connectivity in the imaged neurons using electron
microscopy (EM)-based connectomics. Furthermore, we will use our activity and connectivity data to develop a
data-driven model to explore structure-function relationships across cortical microcircuits.
We will apply our new approach to investigate how population codes, microcircuit connectivity, and structure-
function relationships differ across cortex to perform distinct computational tasks during perceptual decision-
making. Although it is well established that sensory and association cortices perform different functions, little is
known about the mechanisms underlying these different roles, including distinctions in microcircuit connectivity
and population coding schemes. In a first aim, we will compare population codes and microcircuit connectivity
for sensory stimuli and behavioral choices in visual cortex (V1; sensory cortex) and posterior parietal cortex
(PPC; association cortex). We will use computational tools to examine how distinct coding schemes provide
functional benefits. We will use EM connectomics in V1 and PPC for neurons imaged during a perceptual
decision task to probe structure-function relationships for stimulus and choice codes. We will develop a data-
driven recurrent neural network model to relate connectivity and population activity. In a second aim, we will
investigate how neuronal populations transform sensory information into behavioral choices using microcircuit
connectivity. We will develop a new statistical concept – intersection information – to identify activity patterns in
V1 and PPC that carry sensory information that informs behavioral choices. Using EM connectomics, we will
reconstruct the microcircuit connectivity between cells to test hypotheses about sensory-to-choice information
flow. Our work will be some of the first to compare population coding and microcircuit connectivity across cortical
regions and to explore structure-function relationships for perceptual decision-making.
项目摘要
在知觉决策过程中,排列在高度互连的微电路中的神经元群体,
共同编码感官刺激,并将感官知觉转化为适当的行为选择。
我们对知觉决策的认识中的一个根本差距是理解
皮质微电路在神经元群体中塑造动力学和信息代码。这一差距出现了
因为解剖学上的连通性和活动性通常是分开研究的,
计算框架来理解皮层微电路中的结构-功能关系是缺失的。在这里,
我们将组建一个具有互补技能的研究人员团队来解决这个问题。我们将联合收割机
在一个新的和
小鼠的复杂决策任务,使用电子显微镜测量成像神经元的连接性。
基于显微镜(EM)的连接组学。此外,我们将使用我们的活动和连接数据来开发一个
数据驱动的模型,以探索结构功能之间的关系,在皮层微电路。
我们将应用我们的新方法来研究人口代码,微电路连接和结构-
在知觉决策过程中,大脑皮层的功能关系不同,以执行不同的计算任务,
制作。虽然已经确定感觉皮层和联合皮层执行不同的功能,
了解这些不同作用的机制,包括微电路连接的区别
和人口编码方案。在第一个目标,我们将比较人口代码和微电路连接
视觉皮层(V1;感觉皮层)和后顶叶皮层的感觉刺激和行为选择
(PPC;联合皮质)。我们将使用计算工具来研究不同的编码方案如何提供
功能效益。我们将在V1和PPC中使用EM连接组学,用于感知期间成像的神经元。
决策任务,以探测刺激和选择代码的结构-功能关系。我们会建立一个数据库-
驱动的递归神经网络模型,将连通性和种群活动联系起来。第二个目标,我们将
研究神经元群体如何使用微电路将感觉信息转化为行为选择
连通性。我们将开发一个新的统计概念-交叉口信息-以确定活动模式,
V1和PPC携带的感官信息,告知行为选择。使用EM连接组学,我们将
重建细胞之间的微电路连接,以测试关于感官选择信息的假设
流我们的工作将是第一个比较群体编码和大脑皮层微电路连接的工作。
区域和探索结构功能关系的知觉决策。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematical studies of the dynamics of finite-size binary neural networks: A review of recent progress.
有限大小二元神经网络动力学的数学研究:最新进展回顾。
- DOI:10.3934/mbe.2019404
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Fasoli,Diego;Panzeri,Stefano
- 通讯作者:Panzeri,Stefano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher D Harvey其他文献
Christopher D Harvey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher D Harvey', 18)}}的其他基金
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10249108 - 财政年份:2020
- 资助金额:
$ 113.53万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10468896 - 财政年份:2020
- 资助金额:
$ 113.53万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10011969 - 财政年份:2020
- 资助金额:
$ 113.53万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10673164 - 财政年份:2020
- 资助金额:
$ 113.53万 - 项目类别:
Studying perceptual decision-making across cortex by combining population imaging, connectomics, and computational modeling
通过结合群体成像、连接组学和计算模型来研究跨皮层的感知决策
- 批准号:
10242172 - 财政年份:2018
- 资助金额:
$ 113.53万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
8960382 - 财政年份:2015
- 资助金额:
$ 113.53万 - 项目类别:
New approaches to understand neuronal microcircuit dynamics for working memory
理解工作记忆神经元微电路动力学的新方法
- 批准号:
8955230 - 财政年份:2015
- 资助金额:
$ 113.53万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
10395503 - 财政年份:2015
- 资助金额:
$ 113.53万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
9268449 - 财政年份:2015
- 资助金额:
$ 113.53万 - 项目类别:
Parietal Cortex Networks for Sensorimotor Processing During Navigation
导航过程中用于感觉运动处理的顶叶皮层网络
- 批准号:
10614424 - 财政年份:2015
- 资助金额:
$ 113.53万 - 项目类别: